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Abstract

Information Retrieval is concerned with the return of relevant documents

from a document collection given a user query. Term-weighting schemes as-

sign weights to keywords (terms) based on how useful they are likely to be in

identifying the topic of a document and are one of the most crucial aspects

in relation to the performance of Information Retrieval systems. Much re-

search has focused on developing both term-weighting schemes and theories

to support them.

Genetic Programming is a biologically-inspired search algorithm useful for

searching large complex search spaces. It uses a darwinian-inspired survival

of the fittest approach to search for solutions of a suitable fitness. This

thesis outlines experiments that use Genetic Programming to search for term-

weighting schemes. A study of term-weighting schemes in the literature is

undertaken and consequently, the function space is separated into three areas

that represent three fundamental concepts in term-weighting.

Experiments using Genetic Programming to search these three function

spaces show that term-weighting schemes that outperform state of the art

term-weighting benchmarks can be found. These experiments also show that

the new term-weighting schemes have general properties as they achieve high

performance on unseen test data.

An analysis of the solution space of the term-weighting schemes shows

that the evolved solutions exist in a different part of the space than the

current benchmarks. These experiments show that the Genetic Programming

approach consistently evolves solutions that return similar ranked lists in each

of the three function spaces.

Furthermore, the best performing term-weighting schemes are formally

vii



analysed and are shown to satisfy a number of axioms in Information Re-

trieval. A detailed analysis of the existing axioms is presented together with

some amendments and additions to the existing axioms. This analysis aids

in theoretically validating the term-weighting schemes evolved in the frame-

work.

Finally, a secondary application of Genetic Programming to Information

Retrieval is presented to show the potential for Genetic Programming in

addressing other issues in Information Retrieval. This experiment shows

that Genetic Programming can be used to combine further evidence in the

retrieval process to enhance performance. This approach evolves schemes

for use with two automatic query expansion techniques to increase retrieval

effectiveness.
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Chapter 1

Introduction

1.1 Motivation

Since the inception of the World Wide Web, there has been an huge increase

in the amount of information available in electronic format. The time spent

on-line searching for specific information has greatly increased and has led to

frustration for many users. Searchers are often overwhelmed by the amount of

material returned when searching for information on a particular topic. This

problem of information overload has been identified as a serious problem in

many facets of daily life. For both professional and leisure activities, the Web

is increasingly becoming a more vital resource for acquiring information and

knowledge on a vast array of topics. The ease at which information can be

added in an unstructured format to the Web and other digital repositories is

one of the reasons for the large increase in available information. Documents

can be easily uploaded to sites with little or no modification. The relatively

loose structure of simple Web pages and the reluctance of authors to conform

to rigid structure when creating their documents has led to the popularity of

document creation and sharing over the Web. Conversely however, it is this

unstructured format and the large volume of information available that has

led to problems with the retrieval of specific information.

Information Retrieval (IR) systems deal with natural language documents

and queries and attempt to limit this overload by automatically returning

1



Introduction

only those documents that are relevant to a user’s need (query). Humans

have the ability to correctly interpret ambiguous phrases and sentences in

natural language. However, the automatic retrieval of natural language doc-

uments poses many problems. Polysemy (the same word having different

meanings) and synonymy (multiple words having the same meaning) are two

such phenomena that are problematic for the automatic retrieval of informa-

tion. These phenomena can lead to ambiguity in natural language and there-

fore, automated systems have difficultly resolving such complexities. When

a word has multiple meanings or senses (polysemy), it is difficult for an auto-

mated system to correctly choose which meaning is intended by the author.

Conversely, when many words relate to the same concept (synonymy), it is

difficult for such a system to map the different words to the same correct

concept (meaning). It is these generalities and specialties, and indeed the

various depths that resolving them can entail, that cause problems for IR

systems.

Traditionally, IR was only a concern of information gatherers and cata-

logers such as librarians. However, with the advent of the World Wide Web,

problems in the field of IR are increasingly seen as interesting real-world

problems and have been brought to the forefront for many institutions and

organisations. The main objective of traditional text-based IR is to return all

and only relevant documents related to given query. IR is generally broader

than modern Web Search; the aim of which is usually to satisfy a user’s

need as quickly as possibly (where users are typically not interested in all

relevant documents). However, in many other professions, such as the legal

and medical professions, searchers often need to find all relevant documents

for a given information need. Current Web search engines are a product of

continued research in traditional IR and remains a vibrant field today.

Many IR systems are based on the simplistic vector space model of re-

trieval (Salton et al, 1975). In this model, query terms (keywords) are

weighted on how important they are likely to be in measuring information

content and are then matched to terms in the documents. Documents with

more occurrences of these weighted terms are scored higher. The scores for

the terms in each document are aggregated giving a final score for the doc-
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ument. Finally, a ranked list of documents is returned to the user with the

document with the highest score ranked first. This approach, while sim-

plistic, has the advantage of being effective, efficient and easy to implement.

These types of approaches are often referred to as “bag of words” approaches

due of the fact that the terms are treated independently of one another.

As mentioned, these “bag of words” approaches use some method to as-

sign weights to terms which reflect the importance of these terms in de-

termining the topic of the document. These methods of assigning weights

are typically called term-weighting schemes or term-weighting functions. In

the modern Web setting, they are sometimes referred to as ranking func-

tions. Ultimately, it is the weights assigned to these terms that are crucial

to the performance of these types of IR systems (Salton and Buckley, 1988).

Thus, these term-weighting schemes are fundamental to many current search

engines and the theories behind them are crucial in understanding the theo-

retical aspects in IR. IR is not only concerned with alleviating the problem

of natural language retrieval but also of developing an underlying theory for

retrieval. It is interesting, if not crucial, to understand the true nature of

relevance in order to develop systems that accurately model this concept.

Whether relevance is a unique concept or whether it has parallels in other

areas of science is a fundamental question.

There are many sources of potential evidence that can be used to infer

relevance given a user query. Implicit evidence is one such valuable source as

the user does not consciously have to supply this information to the system.

IR systems can gather this knowledge and augment the query automatically.

Temporal aspects may be utilised for news related articles, while spatial or

geographical evidence can be useful when looking for information on certain

events in an area. However, a more fundamental problem in IR is the ambigu-

ity of the language itself. A useful, if not necessary, step is to develop systems

that can automatically disambiguate queries to improve performance. One

such approach adds terms to the query which are useful in the retrieval pro-

cess, but which come from knowledge in the language which is being searched.

Automatic query expansion techniques attempt to alleviate the problem of

vocabulary differences (or mismatch) in a language. In many of these auto-
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matic query expansion techniques, samples of the language are analysed to

determine similarities (synonymy) in terms. Queries can then be augmented

and potentially useful information can be added. This thesis is concerned

with using only evidence which can be automatically inferred from the doc-

uments and collection given an initial user query, in order to learn schemes

which are useful in the retrieval of relevant documents.

1.2 Evolutionary Search and IR

Evolutionary computation techniques are stochastic artificial search methods

that are inspired by natural biological systems. Genetic Programming (GP)

(Koza, 1992) is one such approach. GP is inspired by Darwinian theory of

natural selection, where individuals that have a higher fitness will survive

longer and thus, will produce more offspring. These offspring will inherit

characteristics similar to those of their parents and through successive gen-

erations useful characteristics will propagate.

GP can be viewed as an artificial way of selective breeding. Darwin

(1859) summarised this as follows: “if variations useful to any organic being

do occur, assuredly individuals thus characterized will have the best chance

of being preserved in the struggle for life: and from the strong principle of

inheritance they will tend to produce offspring similarly characterized”. GP

is particularly useful for searching large complex solution spaces as it makes

few assumptions as to how good solutions are characterised. GP is often use-

ful for ‘real word’ problems where an exhaustive search is computationally

infeasible. Often in these types of problems, the interactions of variables in

a potential solution can be very complex. As a consequence, GP is often

used to automatically define functions whose variables combine and react in

very complex ways. A useful feature of GP is that it produces a symbolic

representation of a solution that can be further analysed. This can be ad-

vantageous when a general solution is required. In GP, solutions are created

using some type of genetic material (the genotype). The solutions are placed

in an environment and have a particular behaviour (the phenotype). Each

solution can then be rated on how it performs in its environment (its fitness).
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In many cases, creating a means for representing the genotype and defining

a suitable fitness function can be a difficult problem in itself.

This thesis investigates a GP approach to search for useful term-weighting

schemes in traditional text-based IR. Many theoretical approaches which

develop term-weighting schemes have failed to outperform standard bench-

marks and some fall short of these benchmarks. GP techniques have an

inherent advantage over more traditional techniques of finding solutions, as

solutions that prove useful (no matter how unappealing or unintuitive they

appear to be) are retained in the population. As performance is the only fac-

tor in whether a solution, or part thereof, is retained in future generations, it

is a different paradigm than many other heuristic methods. As GP is a non-

deterministic algorithm, it may also be necessary to conduct multiple runs

of the GP to produce useful solutions. By using this evolutionary learning

approach, the space of possible term-weighting schemes can be searched in a

guided manner.

1.3 Open Research Questions

It has been suggested that throughout the last decade the performance of ad-

hoc term-weighting has plateaued (Voorhees and Harman, 2000). However,

it is by no means definitive what form of term-weighting schemes consistently

perform better than others, nor has it been suggested that there are no further

advances to be made in the area of term-weighting. With the increase in

computing power, there have been more and more attempts applying machine

learning techniques to the domain of IR. Since the inception of GP in the early

1990s, it has been adopted by some researchers to help solve IR problems.

Previous approaches using GP in IR have shown that useful term-weighting

functions can be found using GP (Oren, 2002b; Fan et al, 2004; Trotman,

2005). However, neither an in-depth analysis of the solutions produced nor

an analysis of the search process itself has been conducted. For example, it

is not known whether, given enough time (generations), each run of the GP

would converge to a similar solution (e.g. some ideal solution). It is also not

clear whether solutions produced using GP are fundamentally different from
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the benchmarks on general data.

Recent research has attempted to formalise necessary aspects of theoret-

ically valid term-weighting functions using axioms (Fang et al, 2004; Fang

and Zhai, 2005). Many analytically developed term-weighting functions have

been shown to adhere only to some of these axioms. It has been shown em-

pirically that these axioms are indeed good estimators of term-weighting

function correctness and that they are a useful tool in analysing these types

of functions. However, it is not known whether an empirically based learning

technique, such as GP, will find functions that adhere to these axioms. Fur-

thermore, it is unknown whether any new characteristics of term-weighting

functions, or further axioms, can be identified from the functions found using

an evolutionary approach.

Another open question is whether such learning techniques can be utilised

to improve current automatic query expansion techniques. There are many

methods of expanding queries and re-weighting terms. The exact properties

of the optimal expansion method is unknown. Furthermore, it is not known

if any new properties or new function forms can be found to further increase

performance.

1.4 Hypotheses and Contributions

This thesis examines an evolutionary learning approach to developing term-

weighting schemes in IR. This work develops a framework to evolve a number

of term-weighting schemes using an incremental process similar to some pre-

vious analytical approaches (Amati and Rijsbergen, 2002; Roussinov et al,

2005). This is in contrast to previous GP approaches to this problem (Oren,

2002b; Fan et al, 2004; Trotman, 2005) which learn entire term-weighting

functions. The approach adopted in this work logically divides the term-

weighting scheme into different functional parts and develops each part of

the term-weighting scheme separately. Questions regarding the solution

space and the phenotype of the resulting solutions, that have previously

been ignored, are also addressed. Furthermore, the resulting term-weighting

functions are analysed using an existing axiomatic framework. Previous ap-
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proaches using GP to evolve term-weighting functions have not analysed the

resulting functions and have only concentrated on performance. Finally, it is

shown that GP can be utilised to help find novel functions in a query expan-

sion framework. In particular, this thesis addresses the following research

questions:

• Can term-weighting schemes that are comparable to, or better than,

current benchmarks be found using GP adopting an incremental ap-

proach?

• As GP is a stochastic search algorithm different runs tend to produce

different solutions. Do different runs of the GP converge to a similar

type of solution or are all the best solutions from different runs vastly

different from one another?

• Do the best term-weighting schemes adhere to known axioms to which

all good term-weighting schemes should adhere? Can an empirical

learning technique, like GP, find any new properties or characteristics

of term-weighting functions?

• Can GP be useful in developing term-selection schemes for use in query

expansion techniques by combining further evidence available in the

collection about the language, in order to increase the performance of

an IR system?

Hypotheses

Given these research questions, a number of hypotheses can be more formally

stated and tested.

[H1 ] The evolutionary process adopted (GP) can find term-weighting func-

tions that outperform the best known benchmarks on unseen test collec-

tions using the incremental learning process outlined in this work.

[H2 ] The better solutions produced by the GP process are phenotypically

closer to each other in the search space than existing benchmarks.
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[H3 ] The evolved term-weighting schemes can be theoretically validated using

an axiomatic approach to IR.

[H4 ] GP can be used to evolve schemes for automatic query expansion that

improve performance over the best known benchmarks.

In order to test these hypotheses, an IR system is developed that can com-

pare term-weighting schemes on a set of documents and queries. This system

must be flexible so that each part of the term-weighting scheme can be incre-

mentally built upon. The system must be able to support a GP approach to

learning term-weighting schemes. Furthermore, a number of distance metrics

must be developed that can measure the difference in the positions of the

relevant documents in the ranked lists produced by different schemes. These

distance measures can tell us about the differences in the rankings produced

by the solutions from the evolutionary process. The IR system must also

be extended to incorporate automatic query expansion approaches. Using

a somewhat similar approach, term selection schemes can then be used to

expand queries with potentially useful terms and these functions can then be

compared in the system. A GP approach is then incorporated so that these

query expansion schemes can be learned automatically.

Contributions

This study makes some important contributions to the body of existing work

in both GP and IR. This work presents experiments on the evolution of term-

weighting schemes in text-based IR. This is the first examination using GP in

an incremental process (where the term-weighting scheme is separated into

three intuitive constituent parts). It shows that term-weighting schemes can

be found that outperform state of the art benchmarks using such an approach.

The incremental approach adopted is shown to be both theoretically sound

and empirically reliable. The incremental process reduces the vast search

space in a theoretically motivated manner and allows schemes to be learned

which can be more easily analysed.

This work presents a phenotypic analysis of the evolved schemes in each

of the constituent search spaces. This has not been done before. It shows
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that the GP finds solutions which are phenotypically close to one another.

This confirms that the approach adopted finds solutions that are similar and

that these evolved solutions are different to those of the benchmark solutions

in terms of the ranking of relevant documents. This is also important in

showing that the evolutionary guided process is in some way consistent and

importantly shows that the new term-weighting schemes are different to the

current benchmarks.

An axiomatic approach to IR is utilised to analyse the genotypes that

result from the search process. This axiomatic approach, developed by Fang

and Zhai (2005), has previously not been used to attempt to validate term-

weighting functions produced from a learning approach. Importantly, this

genotypic analysis validates the choice of learning paradigm and also aids

in the development of another previously unknown axiom in IR. It is shown

that the incremental approach adopted aids in the adherence to these ax-

ioms unlike previous GP approaches to this problem. A number of learned

term-weighting approaches presented in the literature are analysed using the

axioms. It is shown that the incrementally evolved term-weighting scheme

adheres to more axioms than any other scheme. This is an important con-

tribution as is the supplementation of the axiomatic approach by this work.

The three parts previously described follow a logical progression from

fitness (performance) to phenotype (the ranking created by the schemes) to

genotype (term-weighting function structure). While these three sections

constitute the core of this work, a final section details further interesting

work using GP to evolve functions for automatic query expansion. This final

section presents work which uses a GP process to combine additional evidence

to further enhance the search process. It shows that in some circumstances

GP finds novel term-selection schemes for query expansion. This is the first

time that term-selection schemes have been evolved in this way.

1.5 Thesis Overview

The motivation and contributions outlined in the preceding section are fur-

ther discussed in the following chapters:
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Chapter 2: Information Retrieval

This chapter discusses relevant background material in IR. The main stages

and models in IR are discussed, as well as the motivation behind term-

weighting in general. Term-weighting is shown to be a crucial aspect in

IR and a general framework for term-weighting is outlined. Importantly,

this framework is a generalisation that is consistent with most approaches to

term-weighting reported in the literature.

Chapter 3: Evolutionary Computation

This chapter presents terminology, algorithmic detail and important concepts

in the field of evolutionary computation and, in particular, the sub-field of

GP. The advantages and disadvantages of this learning paradigm are dis-

cussed together with some theory regarding the evolutionary search process.

The motivation for adopting a GP paradigm is briefly discussed.

Chapter 4: Related Work: Term-weighting Approaches

This chapter describes the current state of the art regarding term-weighting

approaches in IR. Previous approaches applying evolutionary computation

to IR are reviewed, together with specific work in IR that is referred to in

this thesis. In particular, existing GP approaches to IR are discussed. The

motivation for adopting a GP paradigm is discussed in more detail. An

axiomatic approach to IR is also reviewed which introduces some important

constraints to which all good term-weighting schemes should adhere. This

formal specification of theoretically sound term-weighting schemes is useful

for the analysis of learned term-weighting schemes later in this work. Some

important contributions to document length normalisation are also briefly

discussed.

Chapter 5: Design and Experimental Setup

This chapter describes the design of the system and the experimental setup.

Important GP parameters are introduced and the terminal and function sets
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for several of the experiments are outlined. The test collections and fitness

function used are introduced before a brief description of the experiments is

outlined.

Chapter 6: Evolving Global and Term-Frequency Schemes

This chapter presents several term-weighting functions which have been evolved

in the framework. Term-weighting schemes for the first two parts of the

term-weighting framework are outlined in this chapter. These functions are

empirically validated on a number of test collections. Two of the three parts

of the term-weighting scheme are developed in this chapter.

Chapter 7: Evolving Normalisation Schemes

This chapter develops the final part (normalisation) of the term-weighting

scheme. Normalisation is a difficult problem and much research has focused

solely on this. Therefore, it can often be seen as a separate problem, although

it fits into the overall weighting framework. This chapter conducts an analysis

of normalisation in order to determine aspects that affect normalisation in

different retrieval settings. A number of evolved normalisation schemes are

then presented and empirically validated.

Chapter 8: A Phenotypic Analysis of the Search Spaces

This chapter studies the evolution of the term-weighting schemes developed

in the previous two chapters. Measures of the phenotypes of the evolved

term-weighting schemes are introduced and are visually represented. This

aids in the analysis of the evolved solutions in the search space.

Chapter 9: A Genotypic Analysis using Constraints

This chapter uses a number of constraints (axioms) in an attempt to theoret-

ically motivate the term-weighting schemes presented in the preceding chap-

ters. A new constraint is outlined and a number of learned term-weighting

approaches are introduced and analysed to determine if they satisfy the con-

straints.
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Chapter 10: GP for Automatic Query Expansion

This chapter details experiments that use GP to evolve schemes used for

automatic query expansion. Two different approaches to query expansion

are adopted and it is shown that GP can find schemes which are comparable

to those currently used in modern approaches to query expansion.

Chapter 11: Conclusion

This chapter outlines the main contributions of this work and some interest-

ing future directions are also discussed.
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Chapter 2

Information Retrieval

This chapter introduces background material in traditional IR methods,

models and evaluation. More specifically, section 2.1 introduces the various

stages of a typical IR system and discusses some of the standard approaches

adopted. Various models of IR are introduced in section 2.2 including the

Boolean model, the vector space model and several probabilistic approaches.

The focus of section 2.3 is a discussion of term-weighting approaches. This

section (2.3) outlines a term-weighting framework that is used throughout

this work and is deemed important in this regard. Automatic query ex-

pansion techniques are discussed in section 2.4, while IR evaluation metrics

are discussed in section 2.5. The chapter concludes with a summary of the

important points detailed within.

2.1 Stages of Retrieval

IR deals with the automatic search and retrieval of information according to

specification by subject. In the context of information science, IR is often

seen as a parallel counterpart to traditional data retrieval, but instead deals

with retrieving information from semi-structured or unstructured information

sets using natural language queries. However, natural language queries and

documents lead to difficulties in retrieving accurate information for the user.

An IR system must make an effort to interpret the semantic content of
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Figure 2.1: Components of a typical IR system

a document and rank the documents in relation to the user’s query. Many

algorithms and methods have emerged throughout the years to deal with

problems at the various stages of a traditional IR system, some of which

have been adopted as standard by many researchers. Figure 2.1 (Blair and

Maron, 1985) outlines some of the stages of a traditional IR system. Some

of these stages include pre-processing, document and query representation,

comparison, evaluation and feedback. These stages are discussed next before

the concepts behind specific models are outlined.

2.1.1 Preprocessing

The pre-processing stage of an IR system involves applying a set of well-

known techniques to the query and documents in order to convert them to a

more refined and concise format for the comparison stage. These techniques

are employed in many well-known IR systems and common approaches in-

clude stopword removal, stemming and thesaurus construction.

Stopword removal is the removal of words that are too frequent in the
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documents in the collection and consequently, are typically not good dis-

criminators. Such words are frequently referred to as stop-words and are

normally not considered as potential index terms. Articles, prepositions,

and conjunctions are natural candidates for a list of stop-words. Elimination

of stop-words reduces the size of the indexing structure considerably. It is

typical to obtain compression in the size of the indexing structure of 40% or

more, solely with the elimination of stop-words (Baeza-Yates and Ribeiro-

Neto, 1999). A drawback of stop-word removal is that it may reduce recall

for the system (i.e. the ability to return certain documents). Consider the

common example of a user seeking documents containing the phrase “to be

or not to be”. Some stop-word removal techniques will often eliminate all

of these terms and hence, a system will not be able to recognize documents

which contain such a phrase.

Stemming refers to the transformation of a word (term) to its base or root

form. Often, a user specifies a word in a query but only a variant of this word

occurs in a relevant document. Plurals and past tense suffixes are examples

of syntactical variations that prevent a perfect match between a query term

and a respective document term. Stemming algorithms reduce similar terms

to a common root form by identifying morphological derivations. An example

of a stem is the term ‘inform’, which is the stem for the variants ‘informed’,

‘informing’, ‘informs’ and ‘information’. Like stop-word removal, stemming

also reduces the size of the indexing structure as the number of distinct index

terms is reduced. Although there are a few suffix removal algorithms, one

of the simplest and most widely used is Porter’s (1980) stemming algorithm.

Despite being simpler than other more sophisticated algorithms, Porter’s

algorithm yields comparable results (Baeza-Yates and Ribeiro-Neto, 1999).

It should be noted that semantic information can be lost by stemming, but in

general, it does not damage and often improves the performance of IR systems

(Baeza-Yates and Ribeiro-Neto, 1999), while at the same time decreasing the

size of the index structure.

The main purposes of thesaurus construction is to provide a standard

vocabulary for indexing and searching, to assist users with locating terms

for proper query formulation and to provide classified hierarchies that allows
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the broadening and narrowing of the current query according to the needs of

the user. Thesauri can be constructed via manual or automatic approaches

and are often used in query expansion techniques (outlined later in this chap-

ter). Manual creation of a thesaurus requires the knowledge of the language,

while automatic creation is based on calculating measures relating to the

co-occurrence of terms throughout the document collection. The main ad-

vantage of thesauri is the potential of achieving retrieval of information based

on concepts rather than on words.

2.1.2 Document and Query Representation

This stage of the IR process usually involves the adoption of a specific model

of IR. There are many models of IR which adopt various assumptions and

employ varying techniques and theories from different areas of science. Some

classical models of IR will be discussed later in this section. Typically, the

specific model adopted utilises established transforms within the model to

map the document and query into conceptual objects that can then be related

in that model of relevance. While this may seem rather abstract, it will

become clearer when some specific models have been introduced. It is also

beneficial to view this stage at an abstract level so that fewer assumptions

are made as to how relevance is actually modelled.

2.1.3 Comparison

All models of IR employ some type of distance, similarity, probability or

comparison function that is usually inherent within the model itself. At this

stage the query and document have already been transformed into structures

or objects under the operations available in the model. All that is required

now is to use a suitable function to provide a numerical measure of related-

ness (estimated relevance) between each document and the query (in their

transformed form). The numerical measure produced is constrained only by

the model itself. The documents which are more related to the query are

then returned to the user.
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2.1.4 Evaluation

Now that a set of documents has been deemed relevant by the system and

returned in response to a user’s query, it is important that a method of sys-

tematically evaluating the relative or absolute performance of such a system

is available. Relevance assessments for specific queries are generated by ex-

perts in the specific subject (topic) of the query. These relevance judgments

are determined by a human subject and thus, it is the goal of the IR system

to best simulate the human notion of relevance. In traditional text-based

IR, relevance is assumed to be a binary objective judgment (i.e. a document

is either deemed relevant to a query or not). The notion of relevance, and

in particular the aforementioned assumption, is one with which people new

to the field of IR have some difficultly. While the binary assumption of rel-

evance used to test most IR models and systems is by no means a perfect

or indeed correct view, it is an assumption that is useful when an empirical

measurement is required. This assumption has remained over the years for

many aspects of evaluation. A number of studies have indicated that rel-

evance does indeed follow regular patterns and is not as subjective as one

may initially assume (Saracevic, 1997). While initially appearing subjec-

tive, relevance can often be clouded by the ambiguity of natural language

and the noise introduced to the IR process by a number of other underlying

assumptions.

2.1.5 Feedback

Feedback in IR is concerned with improving the retrieval process by typically

enabling the user to supply exemplars of relevant documents or other frag-

ments of useful information following an initial retrieval run of the IR system.

The extra information gathered about the user’s intended information goal is

fed back into the system. Some feedback is explicit and users are requested

to indicate certain relevant or non-relevant documents. Highly descriptive

terms or features are then extracted from these documents and aggregated

with the initial information request (query). This expanded query is resub-

mitted to the system in the hope that the extra information will provide
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further evidence in discovering the ideal set of relevant documents. However,

it has been noted that users rarely explicitly provide this type of information

or at least are reluctant to avail of such techniques when they are available

(Ruthven and Lalmas, 2003). Therefore, implicit (or automatic) feedback

techniques have become a useful alternative in such circumstances. Implicit

feedback usually involves the automatic selection of assumed relevant docu-

ments from an initial retrieval run. These assumed relevant documents are

then treated in a similar way to the explicit approach.

For some models of retrieval these feedback techniques are implicit, and

thus such models need little or no adaption to incorporate feedback. For other

models, incorporating feedback is a rather ad hoc process as the model may

not have an underlying theory, or indeed known operations or transforms,

for feedback to be incorporated.

2.2 Models of Retrieval

2.2.1 Boolean Model

The Boolean model of IR (Rijsbergen, 1979) is a classical model which uses

traditional Boolean logic and set theory to identify documents that match a

Boolean type query. It is based on the simplistic concept that if a document

contains a term or a set of terms that satisfy a query, then that document

is deemed relevant. The standard logical operators ‘AND’, ‘OR’ and ‘NOT’

can be used to construct queries that in turn identify a set of documents.

This model is common and easy to implement but it suffers from obvious

drawbacks. There is no concept of a partial match, as a document is either

contained in the returned set (deemed relevant) or not (deemed irrelevant).

Another disadvantage of this approach is that it places a burden on the user

to attain the knowledge to construct good Boolean queries. Often this model

retrieves too many or too few documents to be of use to the average user.

The extended Boolean model (Salton et al, 1983) attempts to overcome

some of the limitations of the traditional Boolean model by introducing par-

tial membership to the set of relevant documents. This is achieved by util-
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ising fuzzy (or non-crisp) set theory to determine the membership of each

document to the set of relevant documents (determined by the query). In

essence, this introduces the concept of a weighting on each of the query terms

ranging between 0 and 1, while the classic Boolean model can be viewed as

only allowing two distinct values. It is apparent that the weighting on these

terms ultimately determines the degree of membership to the set of relevant

documents and thus, the overall performance of such a model. This partial

matching also introduces the idea of a ranking over the set of possibly rele-

vant documents, rather than strict membership. This model of retrieval can

be viewed as a natural progression from the classic Boolean model.

2.2.2 Vector Space Model

The vector space model (Salton et al, 1975) is one of the most well known

models of IR. In this model, the documents and query are are viewed as

vectors in a multidimensional term space. Each dimension is assumed to

be orthogonal (i.e. terms are viewed as occurring independently). Using a

Euclidean distance function (usually cosine similarity), the distance between

each document and the query is measured. Each document is then ranked on

how close it is to the query (the closest document being ranked first). This

model (or variant thereof) is one of the underlying models in use in many

of the search engines of today. It is appealing due to its efficiency, ease of

implementation and the fact that it achieves good performance compared to

other more sophisticated models of retrieval. However, it should be noted

that each dimension does not count equally toward the final score a docu-

ment is given. Again, weighting plays an important role in the ranking of the

documents. Dimensions are assigned different weights initially (correspond-

ing to the importance of that term), while the degree to which the document

extends in the dimension is determined by occurrences of terms within the

document itself. While the model is appealing, in that it provides a method

for utilising the properties (terms) in the documents in a existing framework

for similarity, its performance ultimately depends on the weighting of the

terms (Salton and Buckley, 1988). However, one drawback is that terms are
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treated as mutually independent (term-independence). This assumption ig-

nores the structure of the document and as a result semantic information is

lost.

Latent semantic indexing (LSI) (Deerwester et al, 1990) can be considered

a vector based approach that attempts to overcome the term-independence

assumption. The entire collection of documents can initially be viewed as a

term-document matrix. Vector approaches to IR are usually characterised by

high dimensionality due to the number of terms in an entire collection. LSI

reduces the high dimensionality of the aforementioned term-document matrix

using singular-value decomposition. This reduction can uncover previous

unknown (or latent) dependencies between terms. Thus, this reduction of

the dimensionality is analogous to uncovering concepts in the collection. The

dimensionally-reduced document vectors are compared against the similarly

reduced query vector in an orthogonal vector space as before using some

type of matching function (the cosine function is common). This technique

can succeed in returning relevant documents that contain none of the query

terms and has shown improved results when compared to the vector space

model. One difficulty lies in choosing the size of the reduced space to which

the documents and queries must be mapped. If the size chosen is too large,

then the system is a vector space equivalent. Conversely, if the size is too

small, it results in very coarse-grained retrieval. A major disadvantage is

that for very large collections, the extremely high dimensionality of the data

can affect scalability as memory consumption and computation time increase

dramatically.

2.2.3 Probabilistic Model

The probabilistic model of retrieval is based on the probability ranking prin-

ciple (PPR) (Robertson, 1977) which states that optimal performance is

achieved when documents are ranked by their probability of relevance. This,

in turn, is estimated based on the distribution of terms in relevant and non-

relevant documents. Thus, these models are interested in providing an opti-

mal ranking over the document set. The binary independence model (BIR)
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(Robertson and Sparck Jones, 1976) proves that an optimal weighting for

terms, based on some underlying assumptions, can be achieved. Again, the

terms are assumed to be independent of each other. Initially, this may seem

like a rather bold assumption (as in the vector space model), for in real-

ity it seems that authors of documents carefully choose terms based on the

existing content within the document. However, it is an assumption that

persists in many models of retrieval due to its simplicity and due to the dif-

ficulty and cost associated in gathering details of the interdependence and

co-occurrence of terms. Another assumption made is that relevance is only

based on the presence and absence of query terms in documents. These as-

sumptions provide for a limited but workable model and provide an optimal

weighting strategy under such assumptions. Importantly, knowing the op-

timal weighting strategy when given details about the distribution of terms

in the relevant and non-relevant document sets can aid the development of

weighting schemes in more difficult circumstances. Indeed, determining the

optimal weighting strategy becomes more difficult when no details about

the distribution of terms in the relevant document set are known a priori.

Therefore, information on the probable relevance distribution must be esti-

mated. Again, this is achieved using measures of term occurrences in the

documents and collection as a whole. This estimation is typically achieved

using a term-weighting scheme.

2.2.4 Language Model

The language model (Ponte and Croft, 1998; Zhai and Lafferty, 2001) can be

viewed as part of the probabilistic family of IR models as it utilises probabil-

ities regarding term occurrences. However, it is derived from speech recog-

nition techniques that try to predict the most likely word sequence given

a sample spoken phrase. In IR, this model views documents as language

models and estimates the probability that a specific language model will

generate the given query. However, as not all of the language models (docu-

ments) contain all possible terms, smoothing techniques are used to provide

a non-zero probability that a specific language model (document) contains
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a specific query term. The probabilities for each language model generating

the specified query are used to rank the documents for the user. This model

has shown comparable performance with the more traditional probabilistic

model of retrieval but has the added advantage of providing a nonparametric

theoretically sound basis for retrieval.

2.3 Term-Weighting

The frequency of term occurrences was first proposed as a measurement of

the usefulness of a term by Luhn (1958). Luhn devised a counting method to

select significant words in a corpus. His technique ranked the words in order

of frequency and employed two cut-off points. It can be noticed that when

words are ranked in such a way they exhibit Zipfian characteristics (Zipf,

1949). An upper cut-off point rejected top-ranked terms, terms that are too

frequent to be of use in distinguishing documents. A lower cut-off point

rejected very low ranked terms, as these terms are very infrequent and do

not contribute significantly to the content of the article. Thus, the technique

measures what he called the resolving power and promoted terms which were

neither too rare nor too frequent.

Figure 2.2 shows the terms that are promoted using Luhn’s idea of re-

solving power. This method was rather ad hoc as the cut-off points were

arbitrarily chosen. However, Luhn’s rather simple idea to use the frequency

of occurrence was essentially the beginning of many of the ideas surrounding

term-weighting schemes that are employed today. Later, work into term-

weighting approaches (Yu et al, 1982; Greiff, 1998) validated much of Luhn’s

work on his notion of resolving power.

It should now be apparent that nearly all, if not all, models of retrieval

depend on some sort of scheme (or strategy) for assigning different weights

to terms to determine how useful they are likely to be in determining the

relevance of a document to a specific query. The particulars of the term-

weighting schemes in each of the models that were discussed have not been

expanded upon. This section will deal with term-weighting explicitly and

can in most parts, if not in its entirety, be applied to all the models of
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rank order of terms

resolving power

lower cut-offupper cut-off

zipf’s law

Figure 2.2: Resolving power of significant terms

retrieval that involve term-weighting. While the underlying theories may be

very different for various models, the realisation of many of the models may

be mathematically very similar. While models play an important part in the

further development of the theory of IR, it is their performance that often

decides the successful uptake of the particular model.

As it has been identified that term-weighting plays a vital role in the

importance of IR systems, many attempts to improve the performance of

such systems have focused on term-weighting in a standard intuitive frame-

work using a “bag of words” approach (i.e. assuming term-independence).

Many attempts (especially in the field of machine learning) have intention-

ally neglected adopting a specific model or theory of IR a priori and dealt

solely with developing useful term-weighting schemes based on a few under-

lying assumptions. This, however, is not to say that term-weighting schemes

produced from such approaches have no underlying theory (as clearly they

must), nor is it true to say that nothing can be inferred about the true na-

ture of IR from these schemes. Indeed, useful schemes produced from learning

approaches could improve the theoretical understanding of retrieval. They
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Table 2.1: Measures/Features used in term-weighting

Key Description of Measure

Q a query
D a document
C a document collection
N the number of documents in the collection
V the size of vocabulary of the collection
t a term in the corpus
tfD

t the number of occurrences of term t in document D

tfQ
t the number of occurrences of term t in query Q

dft the number of documents in which term t occurs
cft the number of occurrences of term t in the collection
dl the length of a document (repeated words)
dlavg the average document length in the collection
ql the length of a query (repeated words)
T the total number of words in the collection

could ultimately lead to improvements and insights that may be applied to

other models. Unfortunately, a lack of theoretical analysis can often dis-

suade researchers from adopting useful weighting schemes produced from

these newer learning approaches.

2.3.1 Standard “Bag of Words” Framework

The “bag of words” approach to retrieval assumes that terms occur inde-

pendently and that no relevance judgments are supplied to the system for a

specific query. Term-weighting schemes in these frameworks are developed

using measures of the query-terms. For the following discussion about the

composition of term-weighting schemes, it is necessary to introduce some of

these measures. Table 2.1 shows some of the measures that are typically em-

ployed in term-weighting schemes. Although the notation in the literature

is often quite varied, the style adopted here is in line with much research,

is mathematically consistent and is in a useful form for the discussions and

analysis in later sections of this work.
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At this point, it is neccessary to introduce a standard framework for term-

weighting schemes. The function outlined (2.1) can be thought of as a gener-

alisation of a family of term-weighting schemes. While it does not represent

the complete space of entire term-weighting schemes (which is boundless),

it does incorporate most, if not all, term-weighting schemes reported in the

literature. The score (S()) of a document D in relation to a query Q can be

calculated as follows:

S(Q, D) =
∑

t∈Q∩D

(ntf(D) · gwt(C) · qwt(Q)) (2.1)

In this framework, there is a basic term-discrimination element (or global

component), a normalised term-frequency element (or within-document com-

ponent) and a query term element (or within-query component). The term-

discrimination element (gwt(C)) aims to determine how useful a search term

is, by using characteristics of the term in the collection C as a whole. Typ-

ically, terms that occur in fewer documents are given a higher weight as

they tend to be better descriptors of that document. Most term-weighting

approaches include some type of term-discrimination element either directly

or indirectly to promote terms that are likely to be better able to identify

certain documents.

The normalised term-frequency (ntf(D)) aims to provide two effects on

each specific document D using within-document measures. Its first aim is

to promote documents which have a higher occurence of query terms. This

is achieved using a term-frequency influence component. It is intuitive that

a document with more occurrences of query terms should be ranked higher

than a document with fewer occurrences. However, not all documents are

of similar length and thus, the term-frequency is normalised in some way to

avoid over weighting longer documents simply because they contain more of

these terms. A document that is longer may simply have a broader topic

and should not be promoted over shorters documents which may be more

concise and preferable to the user. Basically, the concept of normalisation is

a measure of the concentration of query terms in a document. Documents

with a greater concentration of query terms should be promoted ahead of
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documents with a lower concentration. As yet there has not been a discussion

about how these effects can be achieved.

The remaining component of the generalised framework (equation (2.1))

describes the weight assigned to the terms appearing in the actual query

(qwt(Q)). This component is typically a simple description and it has been

shown in many studies that using the actual query term-frequency for such

a component does not lead to any decrease in performance compared to a

more complex form for this component. This is typically because queries

are quite short and supply quite a limited amount of information about

the frequencies and characteristics of the terms themselves. Most of this

information is available from the much larger documents and collection as

a whole. The BM25 equation (which is defined in full in the next section)

uses a query term weighting of
(k3+1)·tfQ

t

k3+tfQ
t

which performs very well when k3

is 1000 (Walker et al, 1997). This is close to a linear weighting in terms of

ranking when k3 is such a large value. For short queries this value can often

become redundant as query terms tend to only appear once and therefore

are assigned the same query term weight.

Term-weighting schemes are sometimes described using two triples (Salton

and Buckley, 1988; Zobel and Moffat, 1998). One triple describes the weight

assigned to the terms in the document, while the second triple describes

the weight assigned to the terms in the query. Each triple contains a term-

discrimination element, a term-frequency element and a form of normali-

sation (as with the framework outlined here). However, with the advent

of TREC data (Harman, 1993) it has been noted that the triple describ-

ing the weight assigned to terms in the query can be reduced to a simple

linear within-query term-frequency (Jones et al, 2000; Singhal, 2001; Fang

and Zhai, 2005). The framework outlined (equation 2.1) is also consistent

with this view of a term-weighting scheme and can be further reduced to the

following form with very little loss of expression:

S(Q, D) =
∑

t∈Q∩D

(ntf(D) · gwt(C) · tfQ
t ) (2.2)

where tfQ
t becomes the entire query weighting triple and ntf(D) · gwt(C)
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describes the document weighting triple. It is worth remembering that the

ntf(D) component provides two within-document effects. This discussion

simply shows that both forms are very similar (the triple description being

a slightly more general framework) and is included for completeness.

2.3.2 Benchmark Term-weighting Schemes

BM25

The BM25 scheme (Robertson et al, 1995) is, at present, one of the best

known and most successful term-weighting scheme in IR. It is derived from

the probablistic model of retrieval and is also the most widely used bench-

mark against which to compare new term-weighting schemes. Each document

D is scored against a query Q in the following manner:

BM25(Q, D) =
∑

t∈Q∩D

(
tfD

t

tfD
t + k1 · ((1 − b) + b · dl

dlavg
)
· w1 · tfQ

t ) (2.3)

where k1 and b are tuning parameters that affect retrieval performance. k1

is called the term-frequency influence parameter as it controls how much

influence an extra occurrence of a term will receive. Its operating range is

from 1.0 to 2.0. b is the normalisation parameter and controls the normalisa-

tion aspect of the function. Possible values for b range between 0.0 and 1.0.

Setting b = 0 will ignore the document length in weighting while a higher

value for b will more heavily penalise longer documents. The query term

weighting used in this framework (tfQ
t ) is slightly different to the original

(Robertson et al, 1995) but has been used successfully in many studies. w1 is

the term-discrimination element of this function and is calculated as follows:

w1 = log(
N − dft + 0.5

dft + 0.5
) (2.4)

This is a form of the classic inverse document frequency (idf) function (Sparck

Jones, 1972) which has been the basis for many term-weighting and feature

extraction techniques over the years. Despite being a very simple formula,
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idf has stood the test of time and is the basis for many benchmark term-

weighting schemes. The idf factor simply assigns a higher weight to terms

that occur in less documents as these terms are ultimately better descriptors

of that document. It can be noted that idf is inconsistent with Luhn’s

idea of resolving power for very infrequent terms (terms with a low rank) as

infrequent terms recieve the highest weight under idf .

Pivoted Document Length Normalisation

Another successful matching function is the pivoted document length nor-

malisation scheme (Singhal et al, 1996). The score of a document in this

scheme is calculated as follows:

PIV (Q, D) =
∑

t∈q∩d

(
1 + log(1 + log(tfD

t ))

(1 − s) + s · dl
dlavg

· w2 · tfQ
t ) (2.5)

where s is the normalisation parameter referred to as the slope and has a de-

fault value of 0.2. w2 is the idf function as found in the pivoted normalisation

scheme and is identified as follows:

w2 = log(
N + 1

dft

) (2.6)

It can be seen that both of these weighting functions consist of a term-

discrimination part (idf) and a type of normalised term-frequency (i.e. they

can both be represented by a single triple).

2.4 Automatic Query Expansion Techniques

The problem of term mismatch in IR arises from the fact that different people

use different terminology when referring to the same concepts. Synonyms are

particularly difficult for IR systems as the query keywords may not match

the keywords of a relevant document. For example, when searching for in-

formation about fixing a “leaking tap”, many relevant documents may be

written by American authors who use the word “faucet” instead of “tap”.

This would typically eliminate a whole set of documents. Automatic query
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expansion techniques try to overcome this problem by adding extra keywords

to the query in order to automatically modify the query representation and

improve the performance of the query. Local and global query expansion

techniques are two approaches that have been developed which attempt to

alleviate this term-mismatch problem. While both of these automatic expan-

sion techniques are introduced here, they can be viewed quite differently in

terms of where they fit in the retrieval process. Local query expansion can

be thought of as an automated feedback process, while global query expan-

sion can be viewed as a part of the preprocessing process. This will become

clearer in the following sections.

2.4.1 Local Query Expansion

Local query expansion (also known as blind or pseudo relevance feedback)

uses terms from the top P ranked documents of an initial retrieval run to add

to the original query. The original query is submitted to the system and a

ranked list is returned. This approach to expansion initially assumes that the

top few documents of this ranked list are relevant. These documents provide

a pool of expansion terms from which to select. Useful terms are then selected

from this pool based on characteristics of the terms in the documents, in the

pool and in the collection as a whole. The selected terms are added to the

original query and are then weighted using some term-weighting approach.

The newly formulated query is then resubmitted to the system. This form of

expansion performs well when several documents in the top few documents of

the initial run are actually relevant, as many of the added terms are related

to the query topic. However, when there are relatively few or no relevant

documents in the top P documents returned, the quality of the added terms

are poor as they are not related to the query topic. This type of expansion is

referred to as local query expansion as the pool of possible expansion terms

comes from a small number of related documents. This form of expansion is

computationally feasible even for large document collections.

As mentioned, the terms to add to the query are chosen based on their

frequency characteristics. As the top P documents are assumed relevant, the
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Robertson/Sparck-Jones weight (Robertson and Walker, 1999) developed for

the probabilistic model of IR is often used to determine the weight for these

terms. This weight (wrsj) is calculated as follows:

wrsj = log(
(pdft + 0.5)/(P − pdft + 0.5)

(dft − pdft + 0.5)/(N − dft − P + pdft + 0.5)
) (2.7)

where P is the number of pseudo-relevant documents, N is the number of

documents in the collection, dft is the document frequency of term t and

pdft is number of pseudo-relevant documents that term t occurs in. A simple

but effective term-selection scheme (Robertson and Walker, 1999) used in

practice is as follows:

TSVt = pdft · wrsj (2.8)

which simply chooses terms with a high wrsj weight that appear in many of

the top P documents. A number of terms (|E|) are then chosen based on

this TSVt score and these are added to the query. The weight applied to

these expanded terms is usually the wrsj weight. The number of terms (|E|)
and number of top ranked documents (P ) deemed relevant are usually fixed

(Billerbeck and Zobel, 2003). In recent years, local query expansion has been

shown to increase the performance of certain types of queries (Mitra et al,

1998).

2.4.2 Global Query Expansion

Global query expansion (also known as thesaurus or co-occurrence based

expansion) uses terms from the corpus as a whole to add to the original

query. This model of expansion assumes that terms that co-occur in many

documents are semantically related (i.e. have some synonymous relation-

ship). Thus, by analysing the entire collection of documents for term-term

relationships or co-occurrences, an automatic domain-specific thesaurus can

be constructed. This automatic approach to thesaurus construction has an

advantage over a manual thesaurus as it can associate terms that may be

synonymous only within a certain domain or context. Using a manual the-
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saurus for individual term synonyms also ignores the context of the query as

terms are treated independently.

Global query expansion has been less successful than its automatic lo-

cal counterpart on larger TREC style test collections over the past decade

(Harman, 1993). It is also computationally expensive to create term-term

associations between all terms in the corpus as modern large document test

collections can contain hundreds of thousands of terms. Many approaches

only use a subset of the terms in the entire collection and then determine

co-occurrence relationships. To develop term-term relationships, conceptu-

ally the role of documents and terms are interchanged in the retrieval model.

In essence, documents become the features of the term. Thus, two terms

that appear in the same document are indexed by a similar feature and

are deemed to have some type of synonymous relationship. Many formu-

las have been proposed to measure the association between two terms using

co-occurrence data. Term-term relationships are often measured using the

cosine similarity measure which is determined as follows:

cos(t1, t2) =
dft1,t2√
dft1 · dft2

(2.9)

where t1 and t2 are two terms, dft1,t2 is the number of documents in which

both t1 and t2 occur. dft1 is the number of documents in which dft1 occurs.

There are many variations of such formulas which aim to accurately find

the best synonyms for a term. As choosing expansion terms in isolation

can often ignore the concept of the query, it is often beneficial to measure

possible expansion terms against each term in the query and aggregate the

results. Expansion terms can then be chosen on how close they are to the

entire query and not just individual terms. This approach (Qiu and Frei,

1993) has shown to be of benefit on certain smaller collections.

2.5 Evaluation

As of this point, it has not been shown how the different models of IR are

compared. It is neccessary to be able to empirically measure the effectiveness
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of an IR system in order to compare them. Document test collections and

evaluations metrics that are integral to the evaluation aspect to most IR

systems are now introduced.

2.5.1 Document Test Collections

An IR system is measured by how well it satisfies users’ queries. Document

test collections are used to test and evaluate the performance of IR sys-

tems. They are comprised of three parts: documents, queries (or topics) and

relevance judgements. A document test collection with queries and prede-

termined human relevance assessments are used to evaluate the performance

of a specific system. The accuracy of the returned rank list of documents

can then be measured and analysed. The TREC (Harman, 1993) collections

afford researchers a large body of documents and queries with which to evalu-

ate their approaches. Results on TREC data provides substantial evidence to

support claims about specific IR approaches. TREC also has various tracks,

which focus on different facets of the IR problem. An ad hoc retrieval track,

a blog retrieval track, a question answering track and a genomics track are

examples of such. However, the preprocessing and construction of a system

capable of testing TREC collections requires the commitment of substantial

time and resources, which leads some researchers to experiment initially with

smaller collections.

2.5.2 Evaluation Metrics

The two main measures of retrieval effectiveness are precision and recall.

Precision is a measure of the accuracy of the returned set of documents, while

recall is a measure of the coverage of the system. For example, if a system

only returns two documents, of which only one is relevant, the precision of

that system would be 50% (1
2
). However, if that collection has a total of 10

relevant documents, its recall would be 10% ( 1
10

). An IR system strives for

high precision and high recall.

precision =
returned ∩ relevant

returned
(2.10)

32



Information Retrieval

recall =
returned ∩ relevant

relevant
(2.11)

where returned is the set of documents returned by the system for a specific

query and relevant is the set of relevant documents in the collection for that

specific query.

Mean Average Precision

Usually, the measures of precision and recall are combined, as a user is typi-

cally interested in high precision and high recall. Average precision (AP) is

a combination of precision and recall applied to a ranked-list setting and is

calculated as follows:

AP =
1

R

N
∑

r=1

P (dr) · Rel(dr) (2.12)

R =
N

∑

r=1

Rel(dr) (2.13)

where N is the number of documents in the collection, dr is the document

at rank r, P (dr) is the precision at rank r, R is the number of relevant

documents in the collection for the query and Rel(dr) is the binary relevance

judgement of the document at that rank r. To test the effectiveness of an

IR system, each system is usually presented with a number of queries (or

topics). The average precision is calculated for each of these queries and

the mean of the average precision for the queries is reported. This metric

is known as mean average precision (or MAP). This is a standard measure

in IR retrieval effectiveness. It is a stable measure (Buckley and Voorhees,

2000) which means that when it reports a sizeable difference in retrieval

effectiveness, it usually indicates that a difference does indeed exist. The

importance of using statistical tests for retieval evaluations has been shown.

Student’s t-test is quite a reliable test in these circumstances (Sanderson and

Zobel, 2005). It has also been indicated that as a general rule of thumb an

absolute difference in MAP between two systems on 50 topics (queries) of
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5% tends to be significant (Sanderson and Zobel, 2005).

F-Measure

In different contexts, users may be more interested in precision than recall

(or indeed vice versa). In a typical web setting, a user may simply want

one relevant document on a particular topic. In this case, the user is more

interested in precision and does not typically need all relevant documents.

In a medical or legal setting, recall becomes important as practitioners may

wish to find all relevant documents for a particular information need. The

standard F-measure (Rijsbergen, 1979; Losee, 2000) combines precison and

recall while a more general F-measure allows this preference to be altered.

Fα = (1 + α) · precision · recall

α · precision + recall
(2.14)

where α is a measure of the preference for recall. The higher this value (α),

the higher the preference for recall. The standard F-measure is recovered

when α is set to 1.

Precision-Recall Curves

In practical circumstances, when a user issues a query, the list of documents

is ranked in decreasing order of relevance. In this situation, the recall and

precision measures vary as the user proceeds with the examination of the

answer set. Thus, a more detailed evaluation requires plotting a precision-

recall (PR) curve. Recall is placed on the horizontal axis and precision on the

vertical axis. Essentially, these curves are plotted using points extrapolated

at the appearance of each correct document (i.e. the horizontal value is

increasing with the percentage of relevant documents found). For example,

if a document ranked 25th is examined and found to be the 5th relevant

document seen out of a known relevant set of 50 documents, the point at

10% recall, 20% precision can plotted. Furthermore, it is standard procedure

to graph PR curves at 11 standard levels of recall (0% to 100% in increments

of 10%). PR curves are useful because they allow the observation of the

quality of the overall answer set.

34



Information Retrieval

Ranked List Correlation Metrics

Distance measures between ranked lists are currently used in IR to calculate

the degree to which to ranked lists are correlated. Spearman’s rank correla-

tion and Kendall’s tau correlation are two common correlations that measure

the difference between ranked sets of data. Both Spearman’s rank correla-

tion and Kendall’s tau use all of the ranked data in a pair of ranked lists

to determine the closeness of the ranked lists. These measures are typically

used to measure how different the output from two systems actually are (i.e.

if two systems rank documents differently). It is possible that two different

term-weighting functions (or indeed two vastly different models) could pro-

duce similar ranked lists in practice and thus have a similar performance. It

is also possible that two different rankings could have the same performance

(i.e. they may return different relevant documents).

2.6 Summary

The main contribution of this chapter is the motivation for the development

of term-weighting schemes and the outline of the three term-weighting com-

ponents. Term-weighting is shown to be a crucial aspect to many models of

retrieval. Term-weighting can directly help with insights into how relevance

should be modelled. A “bag of words” approach to retrieval is introduced

which typically uses two common assumptions, and often forgoes an explicit

theoretical model of retrieval, in order to focus on term-weighting and overall

performance.

Importantly, a general term-weighting framework is introduced in which

term-weighting schemes can be described by three effects (a triple), which

weight the terms appearing in the document. Essentially, this framework

divides the function space into three parts which can be searched in turn.

Section 2.4 discusses automatic query expansion and the chapter concludes

with a discussion on IR systems evaluation.

35



Chapter 3

Evolutionary Computation

In this chapter, evolutionary computation techniques are introduced in sec-

tion 3.1. The evolutionary approach adopted in this work is briefly motivated

before a discussion of GP is presented in section 3.2. The basic GP algorithm

is introduced before the constitution of potential solutions is outlined using

terminal and function sets. The mapping from genotype to phenotype to

fitness is explained and this is mapped to terminology in the IR domain for

the problem of term-weighting. Some other interesting characteristics of GP

are explained before the summary (section 3.3) concludes this chapter.

3.1 Evolutionary Algorithms

Evolutionary computation techniques traditionally can be broken down into

four main algorithms namely, evolutionary strategies (ES), evolutionary pro-

gramming (EP), genetic algorithms (GA) and genetic programming (GP)

(Whitley, 2001). All four algorithms are biologically-inspired stochastic op-

timisation techniques. While evolutionary strategies and evolutionary pro-

gramming primarily use mutation to achieve different solutions, genetic al-

gorithms and genetic programming make use of recombination (crossover) to

develop new solutions.

ES and GAs typically adopt a fixed vector representation of a solution.

The sets of values in these encoded vectors are modified using different tech-
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niques until a suitably fit representation is found. These algorithms are useful

when a static representation of a solution is required. However, to develop a

term-weighting scheme, it is not the actual weights of the document vector

that should be optimised (as the actual optimal weights for documents in

one collection may not be optimal for another collection), it is the method of

determining the weights in the document vector that needs to be optimised.

EP is a technique that is quite similar to ES and was initially used to evolve

finite state automata (Fogel et al, 1966). These types of methods can be

viewed as parameter optimisation methods (Whitley, 2001) and depending

on the encoding can be used to optimise functions of various types.

GP, however, is a not a parameter optimisation method, but a method

of automatic programming which can be used to automatically define func-

tions or actual programs (Whitley, 2001). These functions or programs are

evaluated in a system and thus GP is a more dynamic expressive approach

(i.e. they need to be executed before the fitness is known). GP is typically

more expressive than the other evolutionary approaches and can lead to more

general solutions as they aim to optimise at more abstract level. However,

much of this depends on the actual problem domain itself and the landscape

of the search space. EP mainly uses mutation to modify some representation

of a solution and is used to search local areas of the search space in parallel.

GP however can be used to create programs or functions of any type (pos-

sibly non-continuous) depending on the encoding of the possible solutions.

Due to the flexibility of GP and its expressiveness, it is an obvious choice for

developing functions when aiming to make as few assumptions as possible as

to the constitution of such functions.

Some previous approaches applying evolutionary computation to IR are

reviewed in the next chapter. The remainder of this chapter will discuss the

GP algorithm. Much of the terminology and techniques adopted by GP can

be found in the other evolutionary paradigms.
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Figure 3.1: Basic Flow of a GP

3.2 Genetic Programming

John Koza was one of the primary founders of the field of GP in the early

1990s (Koza, 1992). Inspired by the successes of Holland and Goldberg in

traditional GAs, the GP area has grown to help solve problems in a wide

variety of areas. GP is inspired by the Darwinian theory of natural selection,

where individuals that have a higher fitness will survive longer and thus will

produce more offspring. These offspring will inherit characteristics similar

to their parents and through successive generations the useful characteristics

will strive. In this section the basic GP algorithm will be introduced together

with GP terminology, some of which has been adopted from the field of

biology.
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3.2.1 Algorithmic Detail

GP is a heuristic stochastic search algorithm, inspired by natural selection

(Darwin, 1859), and is useful for navigating large complex search spaces.

Figure 3.1 shows the typical stages involved in a GP. Initially, a population

of solutions is created randomly (although some approaches seed the initial

population with known solutions). The solutions are encoded as trees and

can be thought of as the genotypes of the individuals (i.e. the genetic makeup

of a solution). Each tree (genotype) contains nodes which are either functions

(operators) or terminals (operands). The values on the nodes of each tree are

referred to as alleles. Each solution is rated based on how it performs in its

environment. This is achieved using a fitness function. Having assigned the

fitness values, selection can occur. Individuals are selected for reproduction

based on their fitness value. There are various different methods used to se-

lect individuals but all are based in some way on the fitness of the individual.

As a result, fitter solutions will be selected more often.

Once selection has occurred, recombination can start. Recombination (or

genetic reproduction) can occur in variety of ways. The most common form

is one-point crossover, where two different individuals (parents) are selected

and two new individuals (children) are created by combining the genotypes

of both parents. Another method in which a new solution can be obtained is

mutation. Mutation involves the random change of the allele of a gene which

can result in the random change of a subtree to create a new individual.

Selection and recombination occurs until the population is replaced by newly

created individuals. Once the recombination process is complete (i.e. a new

generation of solutions has been created), each individual’s fitness in the

new generation is evaluated and the selection process starts over again. The

process usually ends when a predefined number of generations is complete,

until convergence of the population is achieved or once an individual is found

with an acceptable fitness.
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Figure 3.2: Representation of a solution

3.2.2 Functions and Terminals

The function set (F ) and terminal set (P ) are the sets of operators and

operands that can makeup a possible solution. These can be viewed as the

individual’s genes which in turn make up a possible solution. Solutions are

modelled as trees with terminals as leaf nodes and functions as internal nodes

as shown in Figure 3.2. The choice of functions and terminals is an important

part in the development of a GP. The size and composition of the set of

functions and terminals influences the size of the search space and also has

implications on possible bias in the space. If one chooses a large function

and terminal set, the size of the search space may be so large that it takes

the GP a long time to converge, if at all. It may also be the case that

many of the functions and terminals are useless and are eliminated from

the population quite quickly. The depth of a solution is also indicated in

Figure 3.2. In some GP approaches the maximum depth of a solution is

limited, as an unlimited depth creates a vast search space. Other approaches
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penalise longer trees (which is reflected in the fitness function) so that shorter

solutions are promoted.

In order to make as few assumptions as possible as to how good solutions

are characterised, the choice of functions and terminals should be as primi-

tive as possible. By this, it is meant that terminals should be as atomic as

possible and that functions should not be overly complex. By including pre-

defined solutions in the population or by encoding parts of known solutions as

terminals, the search space is biased to-wards these types of solutions. This

can result in convergence to a local optimal (i.e. a locally fit but globally

suboptimal solution). This may be an acceptable outcome if one wishes to

explore a region of the space in which known good solutions lie. However, in

general, premature convergence is seen as detrimental and something to be

avoided when one wishes to explore a search space with as few assumptions

as possible.

3.2.3 Selection, Crossover and Mutation

There are many strategies for selecting parent solutions for recombination.

All of these strategies are based in some way on the fitness of an individual.

Tournament selection is one of the most common selection methods used. In

tournament selection, a number of solutions are chosen at random from the

population and these solutions compete with each other. The fittest solution

is then chosen as a parent. This process is repeated to attain another parent.

The number of solutions chosen to compete in the tournament is called the

tournament size and this can be increased or decreased to increase or decrease

the speed of convergence.

An example of one-point crossover is shown in Figure 3.3. For this exam-

ple, the functions used are standard arithmetic operations, while the termi-

nals used are taken from the domain of IR as detailed in the previous chapter.

One-point crossover is the norm in GP. A single point is chosen in both par-

ent trees and the subtrees are swapped at this point. This creates two new

individuals for the next generation. Crossover acts as a global search tech-

nique. This means that the newly created solutions are not necessarily close
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Figure 3.3: Example of crossover in GP

to either of their parents in the solution space. It may be worth remembering

that in the first generation the solutions are randomly distributed through-

out the search space. Crossover is the main method utilised in searching the

space of potential solutions. Consequently rates of crossover are usually high

(e.g. 90% of new individuals may be created by crossover).

Other methods of creating new solutions, like mutation, can occur. An

example of this is shown in Figure 3.4. Mutation is a local search technique.

This means that any newly created solution is often genotypically close to the

original solution. Mutation rarely brings about an increase in performance as

it can be viewed as randomly searching a localised area. However, mutation

can be useful for reintroducing genetic material (alleles) which may have be

eliminated from the population. Rates of mutation are usually kept low (e.g.

less than 10% of new individuals may be created using mutation). Once

the recombination process is complete each individual’s fitness in the new

generation is evaluated and the selection process starts again.
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Figure 3.4: Example of mutation in GP

3.2.4 Genotype, Phenotype and Fitness

The genotype of an individual is its genetic makeup and consists of the tree

shape and its node values. The phenotype of the individual is often described

as its behaviour and is essentially the solution in its environment. The fitness

of a solution is a measure of how good the solution is. Selection occurs based

on the fitness only. Fitness is determined by the phenotype which is in

turn determined by the genotype. As one can imagine, different genotypes

can map to the same phenotype, and different phenotypes can have the same

fitness. For most problems modelled by a GP in an unchanging environment,

the same genotype will map to the same phenotype, which in turn will have

the same fitness. Figure 3.5 shows how the GP terminology maps to the

terminology in the problem domain. The genotype is the representation of

the actual solution and in this problem domain is the makeup of the term-

weighting scheme (i.e. the function form). The phenotype is the behaviour of

a term-weighting scheme in its environment and can therefore be viewed as
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Figure 3.5: Mapping of GP terminology to problem domain

the ranking produced from a specific solution. The fitness function is simply

some scalar value that can differentiate one solution from another in terms

of performance (i.e. MAP).

The size of the solution space is extremely difficult to measure for many

problems. The number of genotypes (assuming binary tree shapes) with

n internal nodes (i.e. functions) can be found using the Catalan number

Cn = (2 · n)!/(n! · (n + 1)!) (Lucas et al, 1993). For every full tree of 2n + 1

nodes, the total number of unique trees creates an enormous space of Cn ·
F n · P (n+1) programs, where F is the number of functions and P is the

number of terminals. Some of these trees may be functionally equivalent

(Gustafson, 2004) due to commutativity, associativity and other properties

of binary operations. Even so, the number of possible programs, even for

small function and terminal sets, is extremely large. However, this does not

necessarily correspond to the number of unique solutions (phenotypes). All

that can be determined is that the number of unique phenotypes is less than
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or equal to the number of unique genotypes in a static environment.

For any given problem, it is difficult (if not impossible) to measure the

number of distinct phenotypes that exist or that can be created by the po-

tential solutions as defined by the parameters, functions and terminals. For

example, by removing a single terminal from the terminal set, the number of

phenotypes that can be searched may or may not decrease.

3.2.5 Other Characteristics of GP

Premature convergence occurs when the population converges early and to

a suboptimal solution. Premature convergence often occurs when one in-

dividual, while far from optimal, is significantly better than the rest. The

population can converge toward this solution quickly and all solutions will

become genotypically similar. Thus, genetic material which may be neces-

sary to reach better solutions is lost and can only be reintroduced to the

population via mutation. Mutation rarely creates a fitter solution as it is

randomly sampling part of the search space. As a result, rates of mutation

are usually kept low while the solution is converging. Keeping the selection

pressure low (small tournament size) and having large populations are sim-

ple but effective ways of preventing premature convergence. The use of large

populations results in GP being computationally expensive. However, this

expense is incurred largely so that the extremely large search space can be

searched effectively. This large search space is created because of the relax-

ation of assumptions as to how solutions are characterised and represented

by GP.

GP is a computationally expensive learning paradigm and as a result, the

allocation of available resources becomes important. While a large population

is usually the best way to prevent premature convergence and achieve fit

solutions, it must be allowed to run for a sufficient number of generations.

An important question in GP is: What is the best way to allocate resources?

Restart theory in GP suggests that it is necessary to restart the GP a number

of times in order to achieve fit solutions. Research has shown that running

a population of size M for G generations N times produces better solutions
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than doing one run of a population M for G × N generations for a number

of different problems (Luke, 2001) (i.e. restarting the GP with a similar

population size leads to better solutions than letting the GP continue once

convergence has seemed to occur). As GP is a non-deterministic algorithm,

it cannot be expected to produce a similar solution each time. In many real-

world problems, the optimal solution is unknown and thus, it is not possible

to know when a certain GP run is converging to-wards the best solution

without exhaustively searching the space. This is another benefit of running

the GP a number of times. Running the process multiple times can help

identify the areas of the search space in which the better solutions lie.

Bloat is a common phenomenon in GP. Bloat occurs when solutions grow

in size without a corresponding increase in fitness. As longer solutions take

longer to evaluate this will take up a considerably amount of resources. Thus,

limiting the size of trees has the effect of reducing bloat, improving general-

isation, reducing the search space and increasing the speed of the GP.

3.3 Summary

In this chapter, the basic GP algorithm has been described. It is an expres-

sive form of evolutionary algorithm useful for searching complex spaces for

programs or functions, unlike any of the other three main types described.

The concepts involved with the selection of a terminal and function set have

been presented, together with factors that influence the representation of a

possible solution in an environment. Standard methods for the recombination

of solutions have also been explained. In particular, the fitness, phenotype

and genotype of a solution have been explained and it has been shown how

these concepts map to those in the problem domain. Other characteristics

and phenomena of this learning paradigm have been discussed.
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Chapter 4

Related Research:

Term-Weighting Approaches

This chapter presents existing research relevant to this work. In particu-

lar, some interesting non-learning approaches to developing term-weighting

schemes in IR are outlined in section 4.1. The section details some exhaustive

approaches that search for good term-weighting scheme. Of particular inter-

est in this section is the introduction of existing axioms for IR. These can be

used to search the space of term-weighting schemes in some guided manner or

can be used to theoretically motivate resulting solutions. Section 4.2 deals

with learning approaches for developing term-weights and term-weighting

schemes in IR. The reasons for adopting the GP paradigm to search for

term-weighting schemes are motivated further in this section. Furthermore,

the merits and limitations of previous approaches applying GP to IR are dis-

cussed. The chapter finishes with a summary (section 4.3) of the important

points detailed within.

4.1 Non-learning Approaches

In this section, some non-learning approaches that develop term-weighting

schemes using a “bag of words” approach for ad hoc retrieval are intro-

duced. These approaches are further broken down into exhaustive (brute-
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force) search techniques and analytical approaches.

4.1.1 Exhaustive Searches

There have been many attempts to exhaustively search a limited space of

term-weighting functions (Salton and Buckley, 1988; Zobel and Moffat, 1998;

Chisholm and Kolda, 1999). An exhaustive search of a limited space of term-

weighting functions has been conducted (Zobel and Moffat, 1998) using a set

of non-primitive (non-atomic) properties and features that are part of exist-

ing retrieval functions. The number of schemes that can be created using

the measures is over 1,500,000 (Zobel and Moffat, 1998). Hence, much of the

search space is closed and only a subset is explored. They conclude that the

search space of similarity measures has a complex landscape making a simple

hill-climbing algorithm ineffectual. Using non-primitive features of existing

term-weighting schemes in any search (be it exhaustive or not) for term-

weighting will bias (or limit) the search toward known forms (and shapes)

of term-weighting functions. These approaches to developing retrieval func-

tions are likely to fail, as there is no guarantee that existing parts of functions

(which are limited in form at such a coarse level) can be effectively combined

to create a high performance weighting function. Another point worth men-

tioning is that for such exhaustive searches, the parts of the functions to be

combined must be quite coarse (non-atomic) so that the search space is quite

small. The search space of term-weighting schemes is so large that an exhaus-

tive search of the entire space is infeasible (if not impossible). Furthermore,

there is no clear consensus on the features that should be used.

The composition of term-weighting schemes has previously been decom-

posed into two triples (Salton and Buckley, 1988) as mentioned in chapter

two. They perform an exhaustive search of a limited space of weighting func-

tions on small test collections. These term-weighting schemes have since been

shown to be quite specific to the smaller collections. The main contribution

of that work is the representation of a term-weighting scheme as two triples.
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4.1.2 Analytical Approaches

Analytical approaches to term weighting have probably been the most com-

mon approaches to developing term-weighting schemes in the past. Many

of the models introduced previously, such as the vector space model (Salton

et al, 1975), probabilistic model (Robertson and Sparck Jones, 1976) and

language model (Ponte and Croft, 1998; Zhai and Lafferty, 2001), have been

developed analytically. There has been much interest in theoretically moti-

vating the inverse document frequency (idf) measure as originally proposed

(Sparck Jones, 1972). Indeed, it can been seen that there is some inconsis-

tency between idf and the resolving power of a term (Luhn, 1958). Luhn

predicted that the correct weighting for both high frequency and low fre-

quency terms should be low. Indeed, some recent work using exploratory

data analysis (Greiff, 1998) has indicated that a flattening of idf at both

high and low frequencies would lead to an increase in performance.

An approach for developing a measure of term-significance has been at-

tempted using Luhn’s idea of resolving power (Zhang and Nguyen, 2005).

This approach develops a measure of the most significant terms in a doc-

ument and is consistent with Luhn’s idea of resolving power. A measure

of the most significant terms in the collection is also developed in a similar

manner. However, their approach has not been tested in an ad hoc retrieval

environment.

The BM25 scheme and the pivoted document length normalisation scheme

outlined previously (chapter two) were developed analytically. They contain

tuning parameters (i.e. are parametric) and in fact represent a number (or

family) of term-weighting schemes in each case. A specific term-weighting

scheme is only recovered by setting the tuning parameters to specific val-

ues. It can be argued that these approaches have only found an area of the

search space in which some good term-weighting schemes lie. This point will

be revisited later in this chapter in a discussion about automatic tuning of

parameters.
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Incremental approach

Recent research (Amati and Rijsbergen, 2002) has developed parts of a term-

weighting scheme incrementally. A family of probabilistic term-weighting

schemes has been developed analytically in this incremental three-stage ap-

proach. Starting with developing measures for determining the information

content of a term (i.e. term-discrimination measures), a complete weighting

approach is determined by adding two more methods of normalisation. The

first method is a non-linear term-frequency factor which implicitly tends to

promote documents containing more distinct query terms (this is what is

often called a term-frequency factor). The second method explicitly uses the

document length to penalise longer documents.

This approach constrains the shape of a term-weighting function by forc-

ing all three aspects to be present. These assumptions are reasonable as the

aforementioned aspects are present in all modern high performance term-

weighting schemes. Furthermore, this approach has the advantage of reduc-

ing the vast search space, while neither limiting the actual shape of, nor

features used within, the constituent functional components of the term-

weighting approach. This work further reinforces the validity of the single

triple desciption of a term-weighting scheme presented in chapter two.

It is also important to note that in developing a term-weighting approach

using such an incremental process, it is important to develop each component

function part in the correct order. The term-discrimination part should be

developed first, as this is the basic weight of a keyword, taking into account its

characteristics in a global context (i.e. all the information about the term in

the entire collection). The term-frequency factor can then be developed. Its

function is to promote documents with greater occurrences of useful terms.

Thirdly, a method of normalisation can be added to the within-document

term-frequency aspect using features that reflect the document length.

The correct ordering for developing the component parts of the schemes is

an important consideration. Consider the case where a normalisation scheme

is developed before incorporating any other aspect. As the probability of

relevance is proportional to the length of the document (Singhal et al, 1996),
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with no other evidence available, it can be determined that the document

length (or normalisation) factor should explicitly promote longer documents.

Longer documents are more relevant to topics due to the broad topic they

can incorporate. However, it can be noticed that in both the BM25 and

pivoted document length normalisation schemes, the document length aspect

is inversely related to the score of a document, thus aiming to penalise longer

documents.

4.1.3 Constraining the Search Space Using Axioms

A novel and elegant approach to formalising useful (if not necessary) char-

acteristics of term-weighting schemes has been developed using constraints

(Fang et al, 2004). This work proposes a number of constraints to which all

good term-weighting functions should adhere. An axiomatic approach (Fang

and Zhai, 2005) has further refined this work. This is an important step in

developing term-weighting functions as it explicitly details certain operating

characteristics of a term-weighting function from basic axioms that are seen

as self-evident. It has been shown that when a scheme violates one of the pro-

posed constrains, it typically indicates non-optimality of the scheme (Fang

et al, 2004; Fang and Zhai, 2005). However, the search for new functions

still involves manually constructing weighting functions that adhere to these

constraints.

The constraints (Fang and Zhai, 2005) are briefly introduced using the

inductive framework as they will be useful for latter sections of this work.

The idea of the inductive framework is to define a base case that describes

the score (weight) assigned to a document containing a single term matching

(or not matching) a query containing a single term. All other cases can be

dealt with inductively, using a document growth function (which describes

the change in score when a single term is added to the document) and a

query growth function (which describes the change in score when a single

term is added to the query). This is an elegant approach to formalising

characteristics of a term-weighting function.

This description of term-weighting components is used to formally de-
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scribe three axioms (or constraints) that are seen as intuitive in a term-

weighting context. Assume S(Q, D) is a function which scores a document

D in relation to a query Q in a standard bag of words retrieval model. With

notation similar in style to (Fang and Zhai, 2005), the existing constraints

can be formalised as follows, where t ∈ T is a term in the set of terms in a

corpus and δt(t, D, Q) = S(Q, D ∪ {t}) − S(Q, D) (i.e. the change in score

as t is added to the document D):

Constraint 1: ∀Q, D and t ∈ T , if t ∈ Q, S(Q, D ∪ {t}) > S(Q, D)

Constraint 1 states that adding a new query term to the document must

always increase the score of that document. This captures the basic be-

haviour of a term-frequency aspect. This constraint is a more general ver-

sion of constraints TFC1 and TF-LNC (Fang et al, 2004). This constraint

ensures that the basic weight of a term (an idf type measure) must be positive

and more importantly, that any penalisation due to the document becoming

longer (normalisation) must be less than the increase in score due to the term

being added.

Constraint 2: ∀Q, D and t ∈ T , if t /∈ Q, S(Q, D ∪ {t}) < S(Q, D)

Constraint 2 states that adding a non-query term to a document must

always decrease the score of that document. This constraint is similar to the

LNC1 constraint (Fang et al, 2004). This constraint ensures that some sort

of normalisation is present and specifies its basic operating principle.

Constraint 3: ∀Q, D and t ∈ T , if t ∈ Q, δt(t, D, Q) > δt(t, D ∪ {t}, Q)

Constraint 3 states that adding successive query terms to a document

should increase the score of the document less with each successive addi-

tion. This constraint is similar to the TFC2 constraint (Fang et al, 2004).

Essentially, the term-frequency influence must be sub-linear. The intuition

behind this constraint is that it is ultimately the first occurrence of a term

that indicates that the document is on-topic (i.e. related to the query). Due

to characteristics of natural language, it is known that when a term first

appears in a document, the likelihood of re-appearance increases. Thus, the

weight given to successive occurrences of a query term should be reduced.
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Weaker Constraint

A weaker constraint, which is non-redundant when constraints 1 and 3 are

not satisfied, has previously been developed (Fang, 2007).

Constraint 1.1: ∀Q, D and t ∈ T , if t ∈ Q, S(Q, D ∪ {t}) > S(Q, D)

Constraint 1.1 states that adding a new query term to the document

should result in a higher score for the document than adding a non-query

term. It is true that if constraint 1 and 2 are satisfied then constraint 1.1 is

satisfied accordingly. This constraint has previously been introduced (Fang,

2007) and is included here, as constraint 1 is not unconditionally satisfied by

any efficient modern term-weighting scheme1. Due to the nature of normal-

isation schemes, if a term-weighting scheme uses the document length ex-

plicitly to penalise the document, constraint 1 (and consequently constraint

3) will never be satisfied unconditionally. Consider the case where a term

with an extremely low idf (term-discrimination) value is added to a docu-

ment. The penalisation due to the document increasing in length may be

more than the increase in weight as the term is added. This is because the

document length is used explicitly to penalise documents. As a result this

penalises all terms which have already appeared in the document. Most if

not all modern weighting schemes penalise documents in this way. However,

if stop-words are removed the impact of this will be lessened.

Usefulness of constraints

Nonetheless, these constraints are used to check the validity of term-weighting

schemes before evaluation. Furthermore, term-weighting schemes which ad-

here to these constraints are shown empirically to outperform weighting

schemes that fail to adhere to one or more of the constraints (Fang et al,

2004; Fang and Zhai, 2005). The constraints are also useful in defining valid

bounds on tuning parameters that appear in many existing term-weighting

schemes. It should be noted that simply adhering to these constraints does

not guarantee a high performance weighting scheme. Rather, it is the viola-

tion of one or more of the constraints that indicates that the performance is

1See appendix A for a further discussion and solution

53



Related Research: Term-Weighting Approaches

non-optimal (i.e. breaks some rule of the proposed model of relevance). It

is worth noting that these axioms typically only constrain a term-weighting

schemes within-document features (i.e. its term-frequency aspect and nor-

malisation aspect). It is also worth noting that the three constraints devel-

oped (Fang and Zhai, 2005) are by no means the only valid ones. Indeed,

there may be many other useful (theoretically valid) constraints (or axioms)

which may be applied to term-weighting schemes.

4.2 Learning Approaches

In this section learning approaches to IR are discussed. Firstly, some ap-

proaches that learn tuning parameters in specific term-weighting schemes

are discussed. Non-GP approaches that attempt to learn a ranking over a

set of document are then discussed. The section concludes with a summary

of GP approaches applied to the problem of term-weighting in IR.

4.2.1 Automatic Tuning of Parametric Schemes

Some early approaches to learning (Bartell et al, 1994a,b) have attempted to

automatically tune parameters in existing term-weighting functions. They

learn a specific instance of a function within a family of functions by learning

good tuning parameters in the hope that they are generalisable for unseen

data.

Term-frequency normalisation has been one of the central issues in ad-hoc

retrieval for many years. Normalisation schemes use a number of features re-

lating to the lengths of documents in a collection to penalise long documents.

However, most document normalisation schemes make use of a tuning param-

eter in order to maximize their performance. In many cases the only way

to find the optimal performance for a collection is by manually tuning this

parameter. Some research into normalisation has studied the normalisation

parameters of the BM25 and pivoted normalisation scheme by calibrating

them for specific collections (Chowdhury et al, 2002). It is concluded that the

normalisation parameters of these schemes need to be calibrated for certain

54



Related Research: Term-Weighting Approaches

collections to maximize performance.

Furthermore, it has been determined that the distribution of document

lengths in a collection can affect the tuning parameter for specific normal-

isation functions (He and Ounis, 2003). The idea of a normalisation effect

is introduced and is shown to be related to the document length distribu-

tion in the collection (He and Ounis, 2005a). It is shown to be a collection

independent constant. Thus, the normalisation tuning parameter for cer-

tain normalisation schemes should be assigned different values for collections

that have different document length distributions so that the normalisation

effect remains constant. An automatic tuning approach to this problem is

addressed and shown to be useful over various collections. It is suggested

in the literature (He and Ounis, 2005b; Chung et al, 2006) that the query

length has an effect on the setting of the tuning parameter in specific nor-

malisation schemes. This phenomenon is closely related to those seen for

various smoothing techniques used in language modelling approaches (Zhai

and Lafferty, 2001). However, no reason for this difference in normalisation

has been presented.

4.2.2 Learning to Rank

There have been more and more approaches that attempt to learn a ranking

over a set of documents for a set of topics (queries). Many of these learning

approaches do not produce a specific term-weighting scheme as they lack

the capability to produce a symbolic representation of the solution. In this

section, several learning paradigms that have been adopted to learn term-

weights or weighting schemes for IR are discussed.

Support Vector Machines

Support vector machines (SVMs) have predominantly been used in text clas-

sification (Kwok, 1998; Leopold and Kindermann, 2002) as they are a su-

pervised linear classifier useful for high dimensional data. Some of these

approaches have yielded an increase in performance but few have tried to

directly optimise MAP. Some researchers (Joachims, 2002; Cao et al, 2006;
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Yue et al, 2007) have adopted SVMs to specifically learn a ranking over a

set of documents for a set of training topics. However, the reason for this

increase in performance is not presented nor is it known if indeed a term-

weighting scheme can be re-modelled to reflect this increase in performance

(i.e. a mathematical equivalent term-weighting scheme). This is due to the

fact that SVMs learn the dimensional weights in the hyperplane. From this,

it is difficult to gain any understanding of an underlying theoretical model

of retrieval.

Genetic Algorithms

Traditional genetic algorithms (GAs) have been adopted by some to learn

term-weights that are useful for retrieval. One of the first approaches using

GAs (Gordon, 1988) models each document as a chromosome (individual)

and performs genetic operations on these documents over generations un-

til a useful representation of the documents is evolved. Another approach

(Vrajitoru, 1999) models the entire document collection as an individual chro-

mosome and attempts to evolve an entire set of term-weights for each doc-

ument in the collection within one individual. Other approaches have been

adopted and have attempted to discover the most optimal GA parameters

for the problem of learning term-weighting in IR for a limited set of resources

(Vrajitoru, 2000). However, the approaches mentioned are typically not gen-

eralisable as they learn specific weights for terms and do not learn a scheme

for weighting terms based on term features. As the optimal set of weights can

already be determined given assumptions adopted by using the binary inde-

pendence retrieval model (BIR) (Robertson and Sparck Jones, 1976) and the

non-binary independence model (Yu and Lee, 1986), many GA approaches

may simply be discovering some aspect of these weights by implicitly using

relevance feedback via the fitness function adopted. This is an interesting

problem from an evolutionary learning perspective. However, learning the

optimal weights on a specific collection does not lead to these actual weights

being reused in a general context.
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Neural Networks

A connectionist network (neural network) approach to IR has previously been

attempted (Belew, 1989; Kwok, 1995). These approaches typically take a

three-layer approach. Typically, one layer consists of the query-terms, which

are in turn connected to a second layer consisting of all of the terms in the

collection. This layer is connected (via its terms) to a third layer representing

the documents that contain those specific terms. This document layer is fed

back into the middle layer for all of the terms in the document. Activation

starts at the query-term layer and spreads to the second layer and onto the

document layer. When the documents reach a certain level of activation,

they fire and activation spreads back to the middle layer, which in turn may

activate different documents. In this way, the approach has the advantage

of returning relevant documents which may have little or no query terms in

common with the initial query. However, because of the spread of activations

in neural networks, it is difficult to analyse these networks.

4.2.3 GP approaches to IR

It is becoming increasingly clear that researchers are seeing GP as a viable

and novel way to solve many difficult real-world problems in the domain of

IR. Most of the previously mentioned learning techniques attempt to learn

the optimal weights for terms in a retrieval setting, rather than learning

a scheme (or function) that can apply useful term-weights automatically.

There have been several attempts to evolve the representation of Boolean

type queries in order to improve their performance (Kraft et al, 1994; Smith

and Smith, 1997; Owais et al, 2005). Typically, these approaches use terms

extracted from the relevant documents for a given query and attempt to

evolve a Boolean representation of the query which maximizes the return of

these relevant documents. This can be viewed as a form of relevance feedback

as it may be used in systems where a user has indicated which documents

are relevant. A multi-objective approach to this problem has been addressed

(Cordón et al, 2002, 2003) which attempts to maximize both precision and

recall. Interesting work has also been proposed (Steele and Powers, 1998),
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where words semantically related to query terms are chosen via a type of

manual thesaurus and a Boolean type query is evolved in order to increase

the performance of the query.

There has also been some difficulty in directly optimising the typical eval-

uation measures used in IR systems (Yue et al, 2007), most notably mean av-

erage precision (MAP). The GP approaches previously adopted (Oren, 2002b;

Fan et al, 2004; Trotman, 2005; Almeida de et al, 2007; Jen-Yuan Yeh and

Yang, 2007) are useful for many reasons. Firstly, they make few assumptions

as to the possible constitution of good term-weighting schemes. For example,

if idf is the optimal type of basic weighting for terms, a GP approach should

be able to find this. The use of primitive functions and terminals allow the

process to combine useful terminals and search a large function space for

correct function forms. Solutions are produced as a symbolic representation,

which aids generalisation when these solutions are prevented from growing

too large. Furthermore, as a symbolic representation is produced, the solu-

tions can be compared against standard benchmarks and can be analysed

mathematically (e.g. using the axioms described previously in this chapter).

These GP approaches are a useful form of offline learning. The solutions

produced (if non-specific) can be applied to any ad hoc retrieval setting.

Oren

One of the first approaches evolving term-weighting schemes using GP (Oren,

2002b,a) uses non-atomic features of the terms, documents, queries and col-

lection to evolve term-weighting functions for use in IR. Using parts of ex-

isting functions as terminals in the GP can be viewed as a type of seeding

or biasing, as prior knowledge as to the makeup of a good weighting func-

tion is assumed. Furthermore, using such non-primitive measures can limit

the search space as these non-primitive measure may not be reducible to

their more primitive component measures. This work uses a small docu-

ment collection (1,239 documents and 70 queries) to evolve functions using

a population of 100 individuals run for 150 generations. The term-weighting

schemes found tend to be quite specific but often compare favourably to stan-
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dard tf-idf type solutions on the training data. Nonetheless, this was the first

attempt using GP to evolve term-weighting schemes for IR and showed that

GP is an interesting and feasible approach for such a problem.

Fan et al.

Another approach evolving term-weighting schemes (Fan et al, 2004) which

assumes a simple query term weighting (i.e. tfQ
t ) has also been attempted.

The function set in this approach is limited and the terminal set, although

primitive, does not span the entire range of primitive measures. Although the

term-weighting functions are learned using only short queries, the training

and test collections are larger than those used in previous research. The func-

tions produced are shown to perform slightly better than a standard version

of BM25 for short queries on general data. This approach uses typical GP

parameters and a population of 200 individuals for 30 generations. However,

due to a lack of analysis of the resulting solutions, it is unclear whether this

GP approach has discovered any new properties useful in retrieval or whether

it has discovered a tuned version of an existing function (e.g. BM25).

Trotman

An approach using primitive atomic features of terms, documents, queries

and the document collection has also been attempted (Trotman, 2005). This

approach uses a large extensive terminal and function set with little or no

constraints on the search space. This approach explores a much larger search

space than previous approaches and importantly uses primitive measures

throughout. The approach also uses sizeable test collections and importantly

uses longer queries for training. This is an important factor in developing

a term-weighting approach that can correctly learn the relative weights be-

tween different terms in the query. The approach uses a seeded population of

100 individuals (96 random and 4 existing functions) run for 100 generations

13 times. It is reported that two of the resulting term-weighting functions

achieve a significant increase in MAP over the default BM25 scheme on

many of the test collection used. However, an in-depth analysis of the best
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functions found was not conducted.

Almeida et al.

More recently, a GP approach optimising MAP for specific collections has

been attempted (Almeida de et al, 2007). This approach specifically uses

non-primitive parts of existing term-weighting schemes as terminals. This

approach also includes complex features from each part of the triple of a term-

weighting scheme (namely term-discrimination, term-frequency and normali-

sation components). The lack of primitive measures in the terminal can leave

a large area of the search space unexplored. Due to the complex nature of

the terminals used, it is difficult to analyse any function produced. Thus, it

is extremely hard to deduce anything about the nature of ad hoc retrieval as

a consequence. The approach adopted can be viewed as a learning approach

to fusion, as it combines and aggregates existing retrieval functions. One of

the main advantages of GP is that it produces a symbolic representation of

a solution which is often generalisable. This study may have somewhat neu-

tralised both of these advantages. A similar approach (Jen-Yuan Yeh and

Yang, 2007) uses somewhat complex features and can also be viewed as a

learning approach to fusion.

Summary of GP Approaches to IR

These four approaches develop entire term-weighting schemes. However,

none of these works formally analyse the solutions produced, nor do they

attempt an analysis of the ranked lists produced by a solution. Oren (2002b)

indicates that the solutions produced from his approach are most likely not

generalisable. Fan’s (2004) approach uses only short queries for training and

it is not certain if the term-weighting schemes produced are generalisable,

especially for longer queries. Of the approaches adopted to date that of

Trotman’s (2005) seems to be have made fewer assumptions and explored

a large search space using primitive measures. In a later chapter (chapter

nine), one of the best schemes presented in each of three of these approaches

is evaluated on unseen test data and tested for constraint satisfaction. This
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will aid in the comparison between the approach adopted in this work and

the GP approaches previously adopted.

4.3 Summary

In this chapter, some recent research relevant to this work has been discussed.

Both learning and non-learning approaches to developing term-weighting

schemes have been discussed. An exhaustive search of a limited search space

of possible term-weighting functions has been shown to be infeasible. Fur-

thermore, these approaches continue to adopt the triple representation of a

term-weighting scheme. Of particular importance is the axiomatic approach

which formalises necessary characteristics of good term-weighting schemes.

The adherence to known axioms can be useful in theoretically motivating

term-weighting functions developed using the incremental GP adopted in

this work.

Learning approaches have been described which range from learning tun-

ing parameters in existing term-weighting functions to developing entire

term-weighting functions. Some learning approaches only learn the actual

document term-weights in some vector representation and are consequently

not generalisable. Therefore, GP is potentially an extremely useful learning

paradigm for navigating the large complex search space of term-weighting

schemes.
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Chapter 5

System Design and

Experimental Setup

This chapter discusses the design of the system and describes the experimen-

tal setup used to test the hypotheses identified in chapter one. Section 5.1

describes the design and flow of the GP system. Some typical GP parameters

used in the experiments are also outlined in this section. Section 5.2 describes

the experiments undertaken in the upcoming chapters to empirically test the

hypotheses. This section (5.2) maps the upcoming experimental chapters to

each of the hypotheses. The document collections used for training, valida-

tion and testing are outlined in section 5.3. The benchmark solutions used

in many of the experiments are outlined in section 5.4 together with details

of the manual tuning conducted to optimise their performance. As the en-

coding and possible representation of a solution is crucial in the GP process,

the selection of the terminal and function sets are presented in section 5.5.

A brief discussion of the fitness function used is also included in this section,

before the main points of the chapter are summarised in section 5.6.

5.1 Flow of the System

In this section the design of the system is discussed. The system evolves the

term-weighting scheme which is the method for assigning weights in the doc-
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Figure 5.1: Flow of the designed system

ument vector representation. Therefore, before the comparison of each of the

document vectors to the query, the weights must be calculated for each term

in the document vector. Figure 5.1 shows the flow of the system. The query

representation used is simple and remains fixed in this work. Both documents

and queries are pre-processed. Primitive features of the document, query and

entire collection are made available to the document representation process.

It is important to allow the GP to use many atomic integer features that

63



System Design and Experimental Setup

relate to a term, the documents and the collection. These features should be

intuitive and primitive in nature. The initial approach allows the GP to dis-

cover if these measures are useful in determining the relevance of a document.

The implementation of the system reflects the maximum ease of calculation

of such measures. An initial population of term-weighting schemes is gener-

ated at random and these schemes are used to weight terms in the documents

using the primitive features gathered at the pre-processing stage. Once the

weights on the document and query vectors have been calculated and as-

signed, the system compares the query vector to all the document vectors,

producing a ranked list of documents. The fitness is then calculated for each

scheme by comparing the ranked list against the human determined relevant

documents for each query. If the stopping criterion is not met, a new gener-

ation of schemes is created by recombining the genomes of the fitter schemes

selected during the selection process. The process of using the population

of schemes to assign weights to the document vectors and then evaluating

the fitness of these schemes for use in the selection process, continues for N

generations.

5.1.1 GP Parameters

Table 5.1: GP parameter settings

Key Typical Values

Population Size 100 (200)
Number Of Generations 50 (25)
Crossover Probability 90%
Creation Probability 5%
Mutation 5%
Creation Type Ramped Half and Half
Maximum Depth 6
Selection Type Tournament Selection
Tournament Size 3
Elitism Yes
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Table 5.1 shows the main parameters in the GP and the typical values

used for the experiments. The population size and number of generations are

self-explanatory. The crossover probability is the probability that a member

of the next generation is created by crossover. The creation probability is

the probability that a member of the next generation is created at random.

As newly created solutions usually have a lower fitness, this parameter is

usually assigned a low value, but is one method of introducing new genetic

material to a generation. The creation type is ‘ramped half and half’, which

means that half of the solutions have a maximum depth for all branches and

half the solutions are created with various different depths. The maximum

depth for creation and crossover are set to the same value to limit the depth

of all trees in the population. Often, during crossover the depth of trees will

grow quickly. These parameters prevent this and promote generality. The

selection type used is tournament selection and the tournament size can be

adjusted. Elitism is used whereby the best individual in the generation is

automatically copied into the next generation. In choosing the population

size and number of generations for the GP, a number of factors should be

considered. The size of the search space is obviously crucial. The number of

terminals, the number of functions and the depth of the trees (length of the

solutions) contribute to the size of the search space. The parameter values

used in this research are in line with previous research in this domain (Fan

et al, 2004; Trotman, 2005; Oren, 2002b).

5.2 Outline of Experiments Undertaken

5.2.1 Evolving Global and Term-Frequency Schemes

In chapter six, experiments relating to the evolution of several term-discrimination

(global) schemes are discussed. In these experiments, a binary weighting is

placed on the within-document components. Once validation is complete

a suitable term-discrimination scheme is chosen. Using this suitable term-

discrimination scheme, a term-frequency component is learned which is de-

pendent on the evolved term-discrimination scheme. This chapter presents
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the results from these two phases of learning.

5.2.2 Evolving Normalisation Schemes

In chapter seven, the problem of learning normalisation schemes is addressed.

Some preliminary analysis is conducted to aid the understanding of the nor-

malisation problem. This analysis is utilised to construct training data in an

attempt to overcome the collection dependence problem that adversely affects

many normalisation schemes. Several normalisation schemes are evolved, de-

pendent on the previously evolved parts of the term-weighting triple. The

entire scheme produced from the approach is evaluated on unseen test data.

Following these three phases of learning a complete evolved term-weighting

scheme can be tested against the benchmark term-weighting schemes. The

experiments in this chapter (together with those in chapter six) aim to test

the first hypothesis [H1 ] which states that the GP approach adopted can find

term-weighting schemes that outperform the best benchmarks.

5.2.3 A Phenotypic Analysis of the Search Spaces

In chapter eight, measures of the differences in the phenotype of the solu-

tions are presented. The best solutions from different runs of the GP are

used to discover if the GP is finding solutions that promote similar relevant

documents (on the training data) or if the GP is finding solutions that are

vastly different from one another (i.e. promote different relevant documents).

This approach can identify where the solutions lie in relation to each other

in the search space. These experiments aim to test the second hypothesis

[H2 ] which states that the better solutions produced by the GP are clustered

closely in the search space.

5.2.4 A Genotypic Analysis Using Constraints

In chapter nine, a selection of learned term-weighting schemes schemes are

analysed to determine if they adhere to existing constraints. It is hoped that

the approach adopted in this work finds term-weighting approaches that are
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consistent with the existing axioms. Three previous approaches which de-

velop term-weighting schemes using genetic programming (Oren, 2002b; Fan

et al, 2004; Trotman, 2005) are analysed. The benchmark schemes and the

learned schemes are analysed using known axioms in an attempt to theo-

retically motivate the schemes resulting from the GP. The analysis and ex-

periments in this chapter aim to test the third hypothesis [H3 ] which states

that the schemes evolved using the incremental process can be theoretically

validated using the axioms for IR.

5.2.5 GP for Automatic Query Expansion

In chapter 10, the framework is adapted to evolve schemes for automatic

query expansion. Schemes that select terms based on co-occurrence measures

and measures gathered from the top few documents from an initial retrieval

run, are developed using a GP framework. The experiments in this chapter

aim to test the fourth hypothesis [H4 ] which states that GP can be used

to improve the performance of term-selection schemes in automatic query

expansion approaches.

5.3 Document Test Collections

Table 5.2: Document collections
Name Collection #docs dlavg σ(dl)

FR Federal Register (1994) 55,630 387.1 1365.2
LATIMES LA Times 131,896 251.7 251.9
FT Financial Times (1991-1993) 138,668 221.8 196.4
FBIS FBIS 130,471 249.9 554.4
OH89 OHSUMED (1989) 74,869 76.9 61.4
OH90-91 OHSUMED (1990-1991) 148,162 81.4 64.0

Collections from TREC1 disks 4 and 5 are used as document collections.

Table 5.2 shows some characteristics of the document collections used. Sub-

sets of documents from the OHSUMED2 (Hersh et al, 1994) collection are

1http://trec.nist.gov/
2http://trec.nist.gov/data/filtering/README.t9.filtering

67



System Design and Experimental Setup

also used as collections. It can be seen that these documents are shorter and

do not vary as much in length as those in other collections.

Table 5.3: Topics

Topics Avg. Topic Length

short med long

301-350 2.4 12.4 43.9
351-400 2.4 10.4 32.9
401-450 2.4 9.0 27.5
1-63 (OH) 2.2 5.1 None

Table 5.3 shows the typical lengths of the topics used. TREC topics 301-

450 are used with the TREC document collections outlined. For each set of

topics, a short query set, consisting of the title field of the topics, a medium

length query set, consisting of the title and description fields, and a long

query set consisting of the title, description and narrative fields is created.

63 short queries were created for the OHSUMED collections by removing

some terms from description field, as there is no title field available for this

collection. No long queries are available for the documents in the OHSUMED

collection.

Standard stop-words from the Brown Corpus3 are removed from both

documents and queries, and the remaining words are stemmed using Porter’s

algorithm. No additional words are removed from the narrative fields as

is the case in some approaches. Only topics that have relevant documents

associated with them are actually used, as performance is undefined for topics

with no relevance judgments.

5.3.1 Training Data

The training collections used for each experiment will be detailed as they are

presented. Although some topics are used for both training and testing, the

relevance judgments and documents used in such circumstances are different.

Thus, essentially this results in different data for training and testing as

frequency characteristics and relevance judgments will vary.

3http://www.lextek.com/manuals/onix/stopwords1.html
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5.3.2 Validation Data

The schemes that are produced by the GP are validated on the FT collection

using topics 301-350 for short, medium and long topic lengths. Essentially,

the schemes are validated on 46 short topics, 46 medium length topics and

46 long topics on a sizeable collection. The best scheme from this validation

process is then chosen as the most general scheme.

5.3.3 Unseen Test Data

The test data consists of topics 351-450 used with the FT collection (96

topics), topics 351-450 used with the LATIMES collection (95 topics), topics

301-450 used with the FR collection (64 topics), topics 301-450 used with

the FBIS collection (115 topics) and topics 1-63 used with both OH89 and

OH90-91 (63 topics for each collection).

5.4 Benchmark Solutions

The BM25 and pivoted document length normalisation schemes are used

as the main benchmark solutions in the experiments. The default values

for the tuning parameters are used in these benchmark solutions. A tuned

version of the benchmarks is also used. The BM25 scheme is tuned using

two values of k1 (1.2 and 2.0, as they are the most commonly reported in the

literature) and nine values of b (0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.825

and 1) for each query type (short, medium and long). The best performing

k1 value on all collections was the default value of 1.2 which was used for all

the experiments. The best values of b for short, medium and long queries on

the test data were 0.125, 0.375 and 0.625 respectively which are used when

dealing with these query types.

The pivoted normalisation function is also manually tuned using seven

values of s (0, 0.025, 0.05, 0.1, 0.2, 0.3 and 0.4) for each query type. Values

greater than 0.4 for s perform poorly (Fang et al, 2004). The best values of

s for short, medium and long queries on the test data were 0.025, 0.05 and

0.2 respectively.

69



System Design and Experimental Setup

5.5 Terminal and Function Sets

Table 5.4: Global terminal set

Terminal Description

dft the number of documents in which term t occurs
cft the number of occurrences of term t in the collection
N the number of documents in the collection
V the size of vocabulary of the collection
T the total number of words in the collection
1 the constant 1
0.5 the constant 0.5
10 the constant 10

Table 5.4 describes the terminal set for the term-discrimination (global)

weighting problem. The global terminal set contains simple atomic features

that relate to the chacteristics of the terms and documents in a collection-

wide context. At this level there is no information about terms in specific

documents or lengths of specific documents. As a minimum criteria, the

features that create existing idf factors should be available to the GP. While

this set (Tables 5.4) may not be exhaustive, it is certainly inclusive of the

majority of primitive features in these types of schemes.

Table 5.5: Term-frequency terminal set

Terminal Description

tfD
t the number of occurrences of term t in document D

1 the constant 1
0.5 the constant 0.5
10 the constant 10

Table 5.5 shows the terminals that are available to the term-frequency

influence component. This set is relatively small as the actual term-frequency

is the only variable terminal. Positional (spatial) evidence is not used in
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traditional vector systems. One previous approach using GP for this problem

uses an ‘accumulator’ to allow some evidence as to the relative position of

the occurrence of each term in a document (Trotman, 2005). A term that

occurs at the begining of a document might be more important than if it

occurs towards the end of a document. However, using this type of feature

violates the original assumptions that were detailed earlier (chapter 2) about

term-independent vector based term-weighting schemes and for this study

potential spatial evidence regarding term occurrence is rejected.

Table 5.6: Normalisation terminal set

Terminal Description

dl the length of a document
dlavg the average document length in the collection
dldev the standard deviation of document lengths in the collection
1 the constant 1
0.5 the constant 0.5
10 the constant 10

Table 5.6 shows the terminal set for the normalisation component. It con-

tains a somewhat limited set of terminals that uses the lengths of documents

as features. Other length normalisation factors could have been included

(e.g. the vector length or the maximum term-frequency within a document).

However, some of these length factors contain less information due to their

lack of granularity. For example, using the total number of words in a doc-

ument is a more accurate description of its length than using the maximum

term-frequency. However, it is true that some length features contain in-

formation not available to others. For example, given the total length of a

document, the number of unique terms in a document (vector length) can-

not be known exactly, although it may be estimated from information about

the total number of terms in the document. For this study, the most ac-

curate document length feature was chosen and some statistical features of

the document lengths throughtout the collection were also calculated. A

useful study that measured the benefit of potential terminals in a complete
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term-weighting framework on small collections showed no particular benefit

of one length factor over another (Cummins and O’Riordan, 2006a) or indeed

a benefit in using these length factors in combination.

Table 5.7: Function set

Terminal Description

+,−, /,× standard arithmetic operators
log() the natural log
exp() exponential
square the square√

the square-root

Table 5.7 shows the function set used in all of the experiments. Standard

arithmetic operators are used together with some non-linear operators. The

combinations of such functions allow a large function space to be searched.

Previous approaches applying GP to IR (Oren, 2002b; Fan et al, 2004; Trot-

man, 2005) contain most of these primitive terminals and functions. The ter-

minal and function sets used for the automatic query expansion approaches

are detailed in the chapter containing the experimental results for that piece

of work.

5.5.1 Fitness Function

The fitness function chosen is mean average precision (MAP). In particu-

lar, this measure favours systems which retrieve relevant documents early

in the ranking produced. When comparing the fitness of different weighting

schemes, a single measure that conveys the effectiveness of a scheme is re-

quired. MAP is a viable measure as it is calculated over all points of recall

and is used in practice as a measure of the performance of IR systems. This

is useful even if a certain ranking is poor (i.e. many relevant documents are

placed at a low ranking) as the MAP metric supplies evidence as to how poor

this ranking is, and more importantly supplies evidence as to where in the

search space more favourable rankings may lie.
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5.5.2 Statistical Significance

Significance tests are carried out using a one-tailed t-test. The null hypothesis

is rejected at the 5% level (p < 0.05). A rule of thumb for IR systems is

that, for a set of 50 topics, a difference of about 5% absolute MAP is often

required in order to see a significant increase (Buckley and Voorhees, 2000).

Using more topics (as is the case in some of the test collections used here) a

significant increase in MAP may be seen with a much smaller difference in

absolute MAP. Significance tests may be unable to detect a difference when

a difference is present for a number of reasons. The sample size used may be

too small to detect a difference or the test itself may not be adequate given

the distribution of the data. In general, it is useful to evaluate a new system

over a number of different test collections so that a more general view of the

system can be determined (Hull, 1993).

5.6 Summary

The design of the system and the experimental setup has been outlined. In

particular, the flow of the system has been presented and the GP parameters

have been briefly explained. A brief description of all of the upcoming exper-

iments is presented and these are mapped to each of the hypotheses outlined

in chapter one.

Importantly, the function and terminal sets for the three stages of the

weighting problem have also been defined and have been limited to relatively

simple primitive measures. The list of terminals and function used is at

least sufficient to enable the GP to find standard benchmark term-weighting

approaches.

From an evaluation aspect, document collections and benchmark solu-

tions have been detailed. The fitness function and the need for statistical

tests have been briefly motivated.
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Chapter 6

Evolving Global and

Term-Frequency Schemes

In this chapter results from the experiments that evolve the first two compo-

nents of a term-weighting scheme are described. The first component of the

term-weighting scheme that is evolved is a basic global weighting scheme for

terms (term-discrimination scheme) (section 6.1). In the benchmark schemes

this is an idf factor. Thus, one would expect that a successful GP run would

find a scheme at least comparable to the performance of idf . These global

schemes aim to measure the semantic content of a particular term from their

global frequency characteristics. Consequently, these types of schemes are

important in other areas of information science.

The second component developed in this chapter is the term-frequency

factor (section 6.2). This component determines the weight to apply to the

occurrences of query-terms in the document. These term-frequency schemes

can be viewed as within-document schemes as they determine the relative

importance of term occurrences in a specific document. The results from the

experiments that evolved these schemes are presented in the latter half of

this chapter.

74



Evolving Global and Term-Frequency Schemes

6.1 Global (Term-Discrimination) Schemes

In the first section of this chapter, a term-discrimination (global) scheme is

evolved in the following framework:

S(Q, D) =
∑

t∈Q∩D

(gw · tfQ
t ) (6.1)

where gw is the global scheme. The idf functions that appear in the BM25

and pivoted document length normalisation function are used as benchmarks

against which to compare the evolved schemes. w1 and w2 (equations (2.4)

and (2.6)) from chapter two can be substituted for gw in this function to

complete the benchmark retrieval functions. It has been stated that the idf

in the BM25 (w1) scheme will often lead to poor results due to a possible

negative weight for certain frequent terms (Fang et al, 2004; Fang and Zhai,

2005). As standard stop-words are removed, no negative weights are assigned

to terms in long (verbose) queries. Tables 5.4 and 5.7 (chapter 5) are used

as the terminal and function set for this global weighting problem.

6.1.1 Training

Table 6.1: Global weighting training collection

Name Collection #docs dlavg σ(dl) Topics # Topic length

GLOBAL OHSUMED (1988) 35,412 72.7 59.2 1-63 63 med

The training collection for this problem consists of approximately 35,000

OHSUMED documents from 1988 and the 63 topics for that collection. Table

6.1 shows some characteristics of the training set. The topics range in length

from 2 to 10 words with an average length of 5.1 words. The GP was run seven

times with an initial random population of 100 individuals for 50 generations.

The best solution produced from each run was retained for validation.

Table 6.2 shows the MAP of seven global evolved weighting schemes (gw)

and the benchmarks on the training data. It can be seen that all the evolved

schemes are better than the benchmarks (w1 and w2) in terms of MAP.
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Table 6.2: %MAP for global weightings on training collection

Name w1 w2 gw1 gw2 gw3 gw4 gw5 gw6 gw7

GLOBAL 19.83 19.98 22.05 21.98 21.60 21.69 20.11 20.11 20.75

Simplification and Validation of Schemes

The seven actual forumlas evolved by the system and their simplifications

are as follows:

gw1 =
V 2·

√
cf · cf

df
· cf
df

df ·T +
√

cf

= V 2·cf2.5

T ·df3 +
√

cf

gw2 = (−
√

cf
−df

) · (log(0.5
cf

))2 · (
cf

df

log( 0.5
cf

)
)2

= cf2.5

df3

gw3 =
√

(log( cf
df

))2 · ((N
df

) · ( N
df/N

) + 1)

=
√

(log( cf
df

))2 · N
df
· (N2

df
+ 1)

gw4 =
√

cf
df

· cf
df

· cf
df

· N
df

=
√

cf3·N
df4
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gw5 =

√

√

0.5
df

gw6 =

√

(
√√

df
df

)2

=
√√

df
df

gw7 =

√

√

cf

N

df2

=

√√
cf/N

df

Table 6.3: %MAP for global weightings on validation data (topics 301-350)

Collection w1 w2 gw1 gw2 gw3 gw4 gw5 gw6 gw7

FT 21.62 21.57 25.54 24.99 21.03 26.12 22.58 22.58 23.41

Table 6.3 shows the MAP of seven global evolved weighting schemes (gw)

and the benchmarks on the validation data. Six of the seven schemes out-

perform both types of idf on the validation data. It can be seen that the

best schemes gw1, gw2 and gw4 all contain a similar component (i.e. cf
df

)

which is a measure of density that has been previously proposed (Kwok,

1996; Franz and McCarley, 2000; Cummins and O’Riordan, 2006a). How-

ever, it has been incorrected motivated in many studies. This factor is more

useful for longer queries and not as useful for shorter queries as was orig-

inally proposed (Kwok, 1996). This will be seen empirically in the results

section. gw4 outperforms all other schemes and is chosen as the best general

term-discrimination weighting function. This function has been validated

over short, medium and long queries (46 topics for each query length) and is

a good choice as a basic weighting for terms.
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Figure 6.1: MAP of global schemes on FR collection
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Figure 6.2: MAP of global schemes on FBIS collection

6.1.2 Results and Discussion

Figures 6.1, 6.2, 6.3, 6.4 and 6.5 show results on unseen test data. It can

be seen that the evolved scheme (gw4) remains the best performing global
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Figure 6.4: MAP of global schemes on FT collection

weighting on various collections. Statistical significance is denoted by two

asterisks (**). It can be seen that there is little difference between the three

weightings used for short queries. This is because when the query is short,
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Figure 6.5: MAP of global schemes on OHSUMED collections

global weighting is not as important. For one-term queries, global weighting

actually becomes redundant. For medium and long queries, the gw4 weight-

ing is significantly better (p < 0.05) than either types of idf used. Both

measures of idf are similar in terms of performance on all collections. An-

other interesting point is that as the query length increases from medium to

long, both types of idf perform worse on all data sets. This suggests that idf

is incorrectly weighting many terms, and that this becomes more apparent as

the topic length increases. It should also be noted that this poor performance

is not attributable to the possible negative weighting that w1 can assign to

certain terms; as w2 can never assign negative weights and performs similarly

to w1. There are indeed many noisy terms in the narrative field of the topic.

However, the performance of the evolved weighting always increases as the

topic length increases, which suggests that it applies a correct weighting to

these types of terms. A previous analysis of global schemes that contain a

type of density measure ( cf
df

) indicates that they are consistent with Luhn’s

theory regarding the resolving power of terms (Cummins and O’Riordan,

2006a). It has been shown that, unlike idf , certain terms, that are neither
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too rare nor too frequent, receive the highest weight. It is interesting that

this has been found using evolutionary techniques.

As many feature extraction techniques and measures of similarity between

entire documents use idf as their basis, it is interesting that this can be

improved upon. idf is used in many other areas in information science.

The newly evolved measures here are likely to be useful in such areas. For

example, in document clustering techniques similarity between documents

are calculated prior to retrieval. As documents are typically much longer

than the queries being used here, it is likely that there would be a substantial

increase in performance using such a measure, as it can be seen that for longer

queries the performance increase over idf is substantial and significant.
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6.2 Term-Frequency Schemes

Now that a new useful global weighting scheme has been validated (gw4), it

can be fixed in the framework and the term-frequency aspect of the formula

can now be evolved. In this section, a term-frequency scheme (tff()) is

evolved in the following framework:

S(Q, D) =
∑

t∈Q∩D

(tff() · gw4 · tfQ
t ) (6.2)

where tff() is the term-frequency factor. As benchmarks against which to

compare the evolved schemes, the BM25 and pivoted document length nor-

malisation schemes are used (ignoring normalisation). Thus, for the BM25

scheme, b is set to 0 and k is set to 1.2 (its default value). For the pivoted

document length normalisation scheme, s is set to 0. The reason for this

is that when using these parameter setting for the benchmarks, they both

contain only a global and term-frequency element. Table 5.5 and 5.7 are used

as the terminal and function set for this term-frequency weighting problem.

A brief analysis of the term-frequency factors evolved in the experiments is

also included in this section.

6.2.1 Training

Table 6.4: Term-frequency training collection

Name Collection #docs dlavg σ(dl) Topics # Topics Length

LOCAL-TF LATIMES 32,059 250.1 259.7 301-350 37 med

The training collection for this problem (Table 6.4) consists of approxi-

mately 32,000 LA Times documents and topics 301 to 350 that have relevant

documents associated with them in that collection. These documents are

used to learn a within-document term-frequency factor as these documents

are longer and have a higher standard deviation of document length com-

pared to the previous training collection used. Thus, the term-frequencies

vary considerably in this environment and therefore, the training collection
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Table 6.5: %MAP for term-frequency weightings on training collection

Name BM25b=0 PIVs=0 tff1 tff2 tff3 tff4 tff5 tff6 tff7

LOCAL-TF 25.85 26.62 27.44 27.88 27.99 27.67 23.90 27.22 27.63

contains more varied characteristics which may aid generalisability. Medium

length topics are used which range in length from 5 to 35 words with an

average length of 9.9 words. The GP was run seven times using a population

of 200 for 25 generations. The best solution from each run was retained for

validation.

Table 6.5 shows that six of the seven term-frequency evolved weighting

schemes (when combined with the previously evolved global scheme) outper-

form the two benchmarks on the training data. Many of the solutions have

a similar performance on the training data. The fifth run (tff5) produced

a constant weighting and has no term-frequency aspect present (the tfD
t

terminal must have been eliminated from the population, or was combined

unsuccessfully, in early generations and was not re-introduced successfully).

Simplification and Validation of Schemes

The seven actual forumlas evolved by the system and their simplifications

are as follows:

tff1() = ((
√

tfD
t /1)/(tfD

t · 10)) + ((tfD
t )/(0.5 + tfD

t ))

=

√
tfD

t

tfD
t ·10 +

tfD
t

0.5+tfD
t

tff2() =
√

log(tfD
t )2 +

√

log(tfD
t ) +

√

(102) + ((−tfD
t ) + (log(tfD

t )))

=
√

log(tfD
t )2 +

√

log(tfD
t ) +

√

100 − tfD
t + log(tfD

t )
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Table 6.6: %MAP for tff() weightings on validation data (topics 301-350)

Collection BM25b=0 PIVs=0 tff1 tff2 tff3 tff4 tff5 tff6 tff7

FT 25.33 20.59 27.12 27.48 28.02 27.64 26.12 27.85 27.87

tff3() = log(0.5)

tfD
t

+ 10 +
log(tfD

t )

log(1+tfD
t )

+ (
log(tfD

t )

log(1+tfD
t )

/log(log(10)))

= 10 + log(0.5)

tfD
t

+
log(tfD

t )

log(1+tfD
t )

+
log(tfD

t )

log(1+tfD
t )·log(log(10))

tff4() = (((((−1)2)/((1 · 0.5) · (−1))) + (((−1)2)/((tfD
t /0.5) + (tfD

t /0.5)))))2

= ( 1
tfD

t

− 2)2

tff5() = 1

tff6() =
√

√

tfD
t /(tfD

t + 0.5) ·
√

tfD
t /(tfD

t + 0.5)

=
√

tfD
t /(tfD

t + 0.5)

tff7() =

√

(((log(1 + 0.5)) + ((log(tfD
t ))/(

√

tfD
t ))) · (tfD

t /tfD
t ))

=

√

log(1.5) +
log(tfD

t )√
tfD

t

Table 6.6 shows that all seven of the schemes outperform the benchmarks

on the validation data. It can be seen that some of the functions can be re-

duced to a relatively simple form and that many have a similar performance.

As tff3() is the best performing scheme on the validation data, it is chosen

as the best term-frequency factor.
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Relative Term-Frequency Influence

A brief analysis of the term-frequency factors of the evolved schemes show

that they assign a similar weighting to terms (at least in the training envi-

ronment). It has been shown by empirical evidence throughout the litera-

ture that the term-frequency factor should typically be non-linear (Robert-

son et al, 2004). Furthermore, the analysis that follows shows that the

evolved term-frequency factors place a lesser influence on term-frequency

than the benchmark approaches. Consider the case of a document of aver-

age length. Using notation similar to that previously used, if δt(t, D, Q) =

S(Q, D ∪ {t}) − S(Q, D) is the change in weight as a query term (t ∈ Q)

is added to the document, then the relative change in score (R S()) as the

term-frequency increases by 1 can be described as follows:

R S() =
δt(t, D, Q)

S(Q, D)
(6.3)

where |D ∩ t| > 0 as R S() is undefined at tfD
t = 1. This is an important

factor in determining how the increase in term-frquency will affect the score

of a document (when dealing with a specific term). This factor is important

as the actual change in weight alone is unimportant in a ranking situation.

Thus, this equation aims to measure the increase in weight as a term is added

when compared to the previous weight of the document.

Three evolved functions and the two benchmarks schemes are plotted for

a single term t with an increasing term-frequency using this relative term-

frequency measure. Figure 6.6 shows this relative increase in weight for a

specific query term in a typical term-frequency range (1-10) for the bench-

mark schemes and three evolved schemes (tff3(), tff4() and tff6()). Firstly,

it can be seen that the relative change in weight is decreasing for the functions

chosen. This indicates that as the term-frequency increases, the increase in

weight decreases. Many of the schemes evolved have similar characterisics

for the term-frequency counts that appear in the training data. It is inter-

esting that the evolved term-frequency functions apply a considerably lower

relative weight than either of the term-frequency factors in the benchmarks.

The first point (1 on the x-axis) indicates the relative increase in weight as

85



Evolving Global and Term-Frequency Schemes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8  9  10

R
e

la
ti
v
e

 c
h

a
n

g
e

 i
n

 w
e

ig
h

t 
R

_
S

()

Increase in term-frequency (x)

R_BM25(x)
R_PIV(x)
R_tff3(x)
R_tff6(x)
R_tff4(x)

Figure 6.6: Measuring the relative increase in term-frequency

the term-frequency increases from 1 to 2, for a document of average length.

This point will account for much of the weight applied to a document as

many query terms may only occur once or twice in a document. It can be

seen that the pivoted document length normalisation scheme has the largest

relative term-frequency influence.

It can be determined in a similar manner that the best scheme tff3() is

similar to
tfD

t

tfD
t +0.45

. This is the term-frequency factor of the BM25 scheme

with a low value for k1. Thus, a further term-frequency factor (tff8()) is in-

troduced. In the section that follows (section 6.2.2) it is shown from an eval-

uation apect that the new scheme is empirically similar to the best evolved

scheme on the test data:

tff8() =
tfD

t

tfD
t + 0.45

(6.4)

This equation is simpler in form than tff3() and will be used in a later section.

This scheme is similar to the term-frequency factor in the BM25 scheme when

k1 is set to 0.45. However, this value for k1 falls below the recommended range

of values originally proposed (1.0 < k1 < 2.0) (Hancock-Beaulieu et al, 1996).
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Importantly, this scheme depends on the global scheme with which it was

evolved. It has previously been reported, when using a similar evolved global

term-weighting, that the okapi term-frequency component can be successfully

incorperated when k1 is assigned a value of 0.2 (Cummins and O’Riordan,

2005). Although this is somewhat unexpected, the reason for this lower

value could be because of the new density measure (cf/df) contained in the

global weighting. This density measure can be thought of as the average

term-frequency of a term in the documents which contain the term. This

leads to an estimation of term-frequency in the global weighting component.

Therefore, it follows from such an argument that the term-frequency influence

factor may need to be reduced in order to correctly combine with the new

global weighting.

6.2.2 Results and Discussion
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Figure 6.7: MAP of tff schemes on FR collection

Figures 6.7, 6.8, 6.9, 6.10 and 6.11 show the performance of the evolved

scheme and the benchmarks on test data. Statistical significance is again

denoted by two astericks (**) and is measured against the best benchmark
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Figure 6.8: MAP of tff schemes on FBIS collection
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Figure 6.9: MAP of tff schemes on LATIMES collection

(BM25 when b = 0). It can be seen that on short queries the performance

of the evolved scheme is similar to that of the BM25 scheme (ignoring nor-

malisation). However, on medium and long queries the performance of the
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Figure 6.10: MAP of tff schemes on FT collection
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Figure 6.11: MAP of tff schemes on OHSUMED collections

evolved scheme is significantly better than BM25 (ignoring normalisation).

Another point to note is that the performance of the evolved scheme increases

as the query length increases for all but the FBIS collection. It can be seen
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that the performance of the BM25 and pivoted document length normalisa-

tion schemes tends to decrease as noisy terms are added to the topic which

mirrors the results seen in the previous section.

Interestingly, the pivoted document length normalisation scheme (ignor-

ing normalisation) performs poorly for all query types on various collections.

This would suggest that the term-frequency influence factor in the pivoted

document length normalisation scheme is the reason for its poor performance

(as its idf factor is comparable to the idf in the BM25 scheme). From the

previous analysis, it could be seen that the term-frequency in the pivoted

document length normalisation scheme places a higher influence on term-

frequency than all other schemes. This would seem to be too large of an

influence for the term-weighting component.

It should also be noticed from empirical evaluations that the tff8() scheme

is similar to the evolved scheme. This would tend to validate the analysis

in the previous section. Again, many feature extraction techniques use ba-

sic tf ·idf weighting techniques while ignoring normalisation. The schemes

develop here are likely to be useful in such circumstances. Furthermore, the

empirical evidence has also validated the brief relative term-frequency anal-

ysis and has produced a simple term-frequency factor which is similar to the

evolved schemes.

6.3 Summary

In this section, term-discrimination (global) schemes have been evolved that

outperform traditional idf type schemes in an ad hoc retrieval setting. A

number of these schemes are presented and are validated on unseen data.

These new global schemes contain different characteristics to those of stan-

dard idf functions. They correctly weight noisy terms in longer more verbose

queries which indicates that they are a truer measure of the information con-

tained in a term.

Term-frequency schemes are evolved which are dependent on the best

general term-discrimination measure. A brief analysis has shown that these

term-frequency schemes apply a lesser weight to the term-frequency aspect
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than those of the benchmark schemes. The analysis is used to introduce

a simple term-frequency function which has similar characteristics to those

of the evolved functions. These schemes (which ignore normalisation) are

shown to have an increased performance on medium and long queries. The

performance on short queries is comparable to that of the benchmark schemes

used thus far. Some reasons for the lack of increase in performance on short

queries are also presented.
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Chapter 7

Evolving Normalisation

Schemes

In this chapter, the third and final component (i.e. normalisation) of the

term-weighting framework is completed. As normalisation is known to be a

difficult problem, an analysis of the standard BM25 normalisation is con-

ducted. This standard BM25 normalisation scheme is incorporated into the

best evolved term-weighting scheme thus far, in order to better understand

the factors that influence normalisation. Section 7.1 presents some detailed

analysis that studies some of the factors that affect the tuning parameters

currently incorperated into normalisation schemes. This analysis aids in the

design of training data that provides a useful general environment for learn-

ing normalisation schemes. The results from the experiments that evolve the

normalisation schemes are presented in section 7.2. A summary of the main

contributions concludes the chapter.

7.1 Normalisation Analysis

Document normalisation is known to be a difficult problem in IR, as tuning is

often needed to overcome the collection dependence problem known to affect

many normalisation schemes (Chowdhury et al, 2002; He and Ounis, 2003).

Therefore, some preliminary experiments are conducted before evolving nor-
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malisation functions. This section introduces some preliminary experiments

using the BM25 scheme and the newer evolved function (S(Q, D) equation

(7.1)) that confirm and extend the findings of previous research.

S(Q, D) =
∑

t∈Q∩D

(ntf3() · gw4 · tfQ
t ) (7.1)

The tff3() scheme can be normalised similarly to the BM25 scheme which

normalises the actual term-frequency. Thus, tfD
t can be substituted with

tfD
t /n() in the term-frequency factor tff3(), such that ntf3() is as follows:

ntf3() = 10 +
log(0.5)

tfD
t

n()

+
log(

tfD
t

n()
)

log(1 +
tfD

t

n()
)

+
log(

tfD
t

n()
)

log(1 +
tfD

t

n()
) · log(log(10))

(7.2)

where n() is some normalisation function. The normalisation function used

with success in the BM25 and pivoted document length normalisation func-

tion is as follows:

n(b) = (1 − b) + b · dl

dlavg

(7.3)

where b is the level of normalisation to apply such that 0 ≤ b ≤ 1. For these

preliminary experiments, this normalisation function is used in the evolved

function as outlined in equation (7.2). The BM25 and S(Q, D) (equation

(7.1)) schemes are tested with nine normalisation (i.e. b) values (0, 0.125,

0.25, 0.375, 0.5, 0.625, 0.75, 0.875 and 1) for short, medium and long queries

on the test collections.

Figures 7.1 and 7.2 show a typical trend across the collections tested.

For the collections shown (LATIMES and FT), it can be seen that for both

schemes a lower value of b (low penalisation) tends to lead to a better per-

formance for short queries. The performance tails off for higher values of b

for these queries. A midrange value of b results in a higher MAP for medium

length queries, while a higher value of b (a higher penalisation) is advanta-

geous when dealing with long queries. This is especially true for the BM25

scheme, whose performance is very poor for low values of b on long queries. It
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Figure 7.1: BM25 and S(Q, D) for varying b on LATIMES

is also worth noting that the S(Q, D) scheme compares quite well to BM25

and outperforms it in some cases (especially for long queries for most values

of b).

Table 7.1 shows the optimal value of b for each collection for short,

medium and long queries for the BM25 and S(Q, D) schemes. It can be

seen that in most cases the optimal level of normalisation increases as the

query length increases (although these are quite coarse intervals of b). The

results for the S(Q, D) scheme suggest a similar trend. This phenomenon

has been previously reported (He and Ounis, 2003, 2005b; Chung et al, 2006)

but neither a further analysis nor a reason for this has been presented.

An analysis of the characteristics of the returned set of documents for

each set of queries (short, medium and long) on four of the collections is

now presented. The entire set of returned documents (i.e. documents which
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Figure 7.2: BM25 and S(Q, D) for varying b on FT

contain at least one query term) for each query on each set of topics is

analysed. Figure 7.3 shows that short queries return longer documents on

average, while medium and long queries return documents that are closer to

the average length document in the entire collection. Furthermore, Figure

7.4 shows that the standard deviation of document length for the returned

set of documents is also greater for the shorter queries, indicating that there

is a greater variation in the lengths of the documents returned. When the

queries are longer, the sets of returned documents become such large samples

of the document collections, that the average document length and standard

deviation are very similar to those of the documents in the entire collection.

The fact that the deviation in document length of the returned documents is

higher for shorter queries is an important factor in the normalisation to be

applied and is investigated next. The main contributions from this section

are that the query length influences the value of b in the BM25 normalisa-

tion (equation (7.3)) and the fact that queries of different lengths return sets

of documents with very different characteristics (which may influence the
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Table 7.1: Optimal b per collection for schemes

BM25

Collections Topics short medium long

LATIMES 301-450 0.125 0.625 0.825
FBIS 301-450 0.125 0.25 0.75
FT 301-450 0.375 0.375 0.625
FR 301-450 0.75 0.625 0.625
OH90-91 1-63 0.625 0.75 -
OH89 1-63 0.375 0.5 -

S(Q, D)

Collections Topics short medium long

LATIMES 301-450 0.25 0.375 0.75
FBIS 301-450 0.125 0.25 0.25
FT 301-450 0.25 0.375 0.5
FR 301-450 0.25 0.375 0.125
OH90-91 1-63 0.625 0.625 -
OH89 1-63 0.25 0.375 -

normalisation to apply). From a purely theoretical perspective this indicates

that this normalisation parameter (b in equation (7.3)) is not as free as was

initially modelled. This may not be of great concern in practice as many

parameter tuning techniques do currently exist (He and Ounis, 2003). How-

ever, in terms of a complete model of term-weighting (which incorporates all

query types and collections), it is an important point to note.

7.1.1 Standard Deviation of Returned Documents

This section aims to investigate what effect the changing of the distribution

of document lengths in the collection has on the optimal value of b in the

BM25 normalisation scheme (equation (7.3)). This normalisation function

is comprised of a ratio of a specific document to the average document length

( dl
dlavg

). This ratio is then used in a linear function to penalise the document

accordingly. However, this ratio tells us nothing about the distribution of
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Figure 7.3: Average length of returned documents

documents in the collection or the expected deviation of a document from

the average document length. For collections with a high deviation of doc-

ument length, the ratio ( dl
dlavg

) will vary considerably from very low values

(for the shorter documents) to very high values (for the longer documents).

Furthermore, from the previous experiment, it was determined that short

queries (which return documents sets with a high standard deviation) require

a smaller value of b in equation (7.3) for optimal performance. Ultimately,

this suggests that the optimal value of b may be inversely related to the

deviation of documents in the collection.

To test this hypothesis, a small sample of documents from the LATIMES

collection is used with the medium length topics (301-350). A small collection

of 8,598 LATIMES documents with an average document length of 28 and

a standard deviation of 10 (i.e. low deviation given the average document

length) is created. The MAP (using the S(Q, D) scheme) for various values

of b on this collection is measured. The characteristics of the collection is

then modified by adding 526 extremely long documents. This dramatically
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Figure 7.4: Standard deviation of returned documents
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Figure 7.5: ∆ of deviation with the S(Q, D) scheme
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changes the properties of the collection by adding a few documents. The

collection now consists of 9,124 documents with an average document length

of 95 and a standard deviation of 272 (i.e. high deviation given the average

document length). The MAP (again using the S(Q, D) scheme) for the same

values of b is recalculated. As with all the experiments only queries with

relevant documents in the sample collection are used. From Figure 7.5,

it can be seen that when the standard deviation is low (little variation in

document length) normalisation is less important (an expected result in a

ranking situation) but still has a benefit at higher levels of b. When the

standard deviation increases, the optimal level of b drops sharply as using a

high value of b severely penalises the longer documents (some of which are

relevant to at least one of the queries). Usually, a high standard deviation

indicates a number of very long documents, due to a lower bound (of zero)

on the distribution of document lengths.
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Figure 7.6: ∆ of deviation with the S(Q, D) scheme

Figure 7.6 shows the results from a similar experiment using a different

3,710 LATIMES documents with an average length of 151 and standard de-

viation of 12. A further 48 longer documents are added changing the average
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documents length to 184 and the standard deviation to 287. The keys in

both figures show the average document length and standard deviation re-

spectively in parenthesis for each collection. It can seen that this phenomenon

is the same (albeit contrived and exaggerated in these cases) as that which

was observed when using different length queries. Previously, it was shown

that shorter queries return a document set with a higher standard devia-

tion. For these short queries, a lower level of b is beneficial. Hence, these

two phenomena are actually related and ultimately, it is the deviation of

documents lengths that influences the normalisation parameter b in equation

(7.3). The short queries create a different distribution of document length in

the returned set of documents. This analysis can now aid us in devising an

approach to learn normalisation schemes in a suitable training environment.

7.2 Normalisation Schemes

In this section, normalisation schemes (n()) are evolved in the framework

outlined in the previous section. A normalistion approach similar to the

BM25 scheme, which normalises the actual term-frequency measure, is as-

sumed. Thus, the aim of this experiment is to evolve normalisation schemes

(n()) in the scheme described in equations (7.1) and (7.2).

7.2.1 Training

Table 7.2: Training data for Normalisation

Name Collection #docs dlavg σ(dl) Topics # Topics Length

NORM1 LATIMES 10,822 168.5 103.9 301-350 24 med
NORM2 LATIMES 12,017 244.7 250.6 301-350 29 med
NORM3 LATIMES 11,329 235.5 367.9 301-350 28 med

The development of training data is crucial to the potential generalis-

ability of the normalisation schemes produced from the GP approach. It is

beneficial to have a number of different environments (collections) on which

to learn normalisation schemes. Three collections are constructed using an
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approach similar to that described in the previous section (7.1.1). A collec-

tion of 10,822 documents (NORM1) is created from the LATIMES collections

and the queries which have relevant documents associated to them in those

collections are used. 1,195 longer documents (between 820 and 1050 words)

are added to change the properties of the collection. This is the second

collection (NORM2) and consists of 12,017 documents. The third collection

(NORM3) consists of the first 10,822 documents and another 507 even longer

documents (documents longer than 1050 words). This creates a collection of

11,329 documents again with different characteristics. Table 7.2 shows the

characteristics of the three collections. These documents have been chosen

based on their length features so that there is one collection with a low stan-

dard deviation compared to the average document length, another with a

standard deviation close to the average document length and a further col-

lection in which the standard deviation is higher than the average document

length. The GP is run seven times and the MAP for the three collections

is aggregated and used as the fitness function. Thus, the GP is trying to

optimise the MAP for the three collections.

Table 7.3: % MAP for n() weightings on training collection

Collection BM25 PIV n1() n2() n3() n4() n5() n6() n7()

NORM1,2,3 45.25 42.60 48.78 48.79 49.03 47.07 48.79 48.85 48.79

The results from the training data look promising as all of the evolved

schemes outperform the benchmarks. However, it is unknown if the solutions

evolved are useful on general data or have overfitted to this training data.

Simplification and Validation of Schemes

The seven actual forumlas evolved by the system and their simplifications

are as follows:
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n1() =
√

(
√

1)/((dlavg/1)/(0.5 + dl))

=
√

dl+0.5
dlavg

n2() =
√

dl
dlavg

n3() =

√

(dl + ((−1)/(dlavg/(dl +
√

1))))/(dlavg/(
√

(dl +
√

1)/(dlavg · exp(1))))

=
√

(dl − dl+1
dlavg

)/(dlavg/(
√

(dl + 1)/(dlavg · exp(1))))

n4() = (1 · dl)/(dlavg + σ(dl))

= dl
dlavg+σ(dl)

n5() =
√

((−dl)/(−dlavg))

=
√

dl
dlavg

n6() = ( dl
dlavg

)/((
√

dl)/((log(10)) + dlavg))/
√

(((
√

dl)/( dl
dlavg

))/( dl
dlavg

)) + dlavg

= (dl/dlavg)/(
√

dl/(log(10)+dlavg))√
(((

√
dl/(dl/dlavg))/(dl/dlavg))+dlavg)

n7() =
√

dl
dlavg

Table 7.4: % MAP for n() weightings on validation collection

Collection BM25 PIV n1() n2() n3() n4() n5() n6() n7()

FT (301-350) 28.25 29.57 29.66 29.67 29.65 29.61 29.67 29.01 29.67
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The validation data shows that most, if not all, of the normalisation

schemes are comparable in terms of MAP. The lowest MAP achieved on the

validation data is by n6(). Many of the formula are also very similar in

structure. n2(), n5() and n7() are equivalent, while n1() is structurally very

similar. n2() is chosen as the best normalisation function and is used in the

following results section. The benchmark schemes on this validation data are

also comparable in terms of MAP. It seems that normalisation (at least for

the validation data) aids the benchmark schemes considerably.

7.2.2 Results and Discussion
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Figure 7.7: MAP of full schemes on FR collection

Figures 7.7, 7.8, 7.9, 7.10 and 7.11 show the performance of the full

evolved scheme against the benchmarks. The full evolved scheme is labelled

S(Q, D) in these results for simplicity. A tuned version of BM25 and the

pivoted document length normalisation scheme are also shown. The tuned

schemes are tuned for query length only. Therefore, the default BM25 may

sometimes outperform the tuned BM25 (i.e. BM25opt) on a specific col-

lection but over all collections for a specific query length the tuned BM25
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Figure 7.8: MAP of full schemes on FBIS collection
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Figure 7.9: MAP of full schemes on LATIMES collection

is optimal. Firstly, the new scheme developed is comparable to, and often

significantly outperforms (denoted by (**)) the default BM25 on much of

the test data. The evolved scheme is non-parametric and therefore should be

104



Evolving Normalisation Schemes

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

short medium long**
topic length

MA
P

BM25
BM25opt
PIV
PIVopt
S(Q,D)

Figure 7.10: MAP of full schemes on FT collection
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Figure 7.11: MAP of full schemes on OHSUMED collections

compared against one BM25 benchmark (i.e. fixed values for its tuning pa-

rameters). The significance tests are conducted between one BM25 scheme

(the default) and the evolved scheme. The newly evolved scheme consis-
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tently outperforms the pivoted document length normalisation scheme on all

unseen test data. Normalisation increases the performance of both bench-

mark schemes considerably, while moderately increasing the performance of

the evolved scheme. Appendix B shows the precision-recall curves for the

complete evolved scheme (S(Q, D)) and the default BM25 scheme on all the

unseen test data.

It was previously hypothesised that the deviation in document length may

affect normalisation. However, only one learned scheme uses the standard

deviation factor explicitly. Interestingly, six of the seven schemes evolved

are sublinear with respect to the document length. This means that as

the document grows in length the level of penalisation decreases. The one

scheme which is linear with respect to the document length uses the standard

deviation in a similar manner to that which had been hypothesised. The sub-

linearity of these normalisation schemes will be discussed and theoretically

motivated in detail in a later chapter.

7.2.3 Validation of Preliminary Analysis

While it has been shown that the evolved scheme often outperforms the stan-

dard benchmarks, the validity of the learning approach for normalisation has

yet to be shown to be beneficial. In this section, it is shown that many of the

normalisation schemes (namely n2()) perform close to the optimal value of b

in the standard normalisation scheme (equation (7.3)). An interesting, if not

crucial, evaluation is to compare the evolved normalisation scheme used here

(n2()) against the standard BM25 linear normalisation over all values of b as

was used in the previous section. For such an evaluation, the only factor that

should vary is the normalisation scheme and therefore, the evolved scheme

(equations (7.1) and (7.2)) (for which the n2() normalisation function was

evolved) is used for the following evaluation (as in the preliminary analysis).

Figure 7.12 shows the nonparametric n2() scheme and the n(b) scheme for

nine values of b on a selection of test data using the evolved S(Q, D) scheme

outlined at the beginning of the chapter. This example shows that the evolved

normalisation is close to the optimal performance of the standard BM25
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Figure 7.12: MAP of n(b) vs n2() schemes on FT

linear normalisation for short queries on the FBIS collection (i.e. b = 0.125).

It also shows that the evolved normalisation scheme slighly outperforms the

most optimal setting of the standard normalisation for long queries on the

FT collection (i.e. b = 0.5). This is encouraging as the learned scheme is

nonparametric.

Comparison Metric

For normalisation schemes that contain a tuning parameter, it is useful to

know how difficult it is to tune the parameter to achieve a high level of

performance. A comparison metric is now presented which compares the

nonparametric normalisation to the parametric normalisation. It is useful to

know if the optimal setting of the tuning parameter resides in very small range

of values within the possible range of values for the parameter (sensitivity)

and how much of an increase in MAP the optimal normalisation setting
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provides, when compared to other settings for the parameter.
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Figure 7.13: MAP of n(b) vs n2() for short topics on OH89

Figure 7.13 shows the performance of the evolved normalisation scheme

(a line) and the standard BM25 linear normalisation scheme (a curve). A

useful comparison metric can be calculated by measuring the area which lies

above the non-parametric normalisation line and below the curve (A1), by

the area that lies between both (A1 + A2 + A3). If b is a completely free

parameter, picking a random value of b for an unseen collection would lead

to an average value of 50% for this metric. Thus, the comparision metric

(NC()) can be formulated as follows:

NC() = 1 − A1

A1 + A2 + A3
(7.4)

where A1, A2 and A3 are the areas between the line indicating the per-

formance of the nonparametric scheme (n2()) and the curve indicating the

performance of the parametric scheme (n(b)) as indicated in Figure 7.13.
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Table 7.5: Comparison of n2() vs n(b) for S(Q, D)

short medium long

Collection % % %

FR 99.54 100* 92.37
FBIS 97.01 100* 100*
LATIMES 99.98 99.96 84.76
FT 99.40 100* 99.93
OH89 75.98 78.37 -
OH90-91 94.82 100* -

Table 7.5 shows this metric for all of the test collections. It can be

seen that over many different collections, and especially over different query

lengths, the non-parametric function performs very close to the optimal set-

ting of b tuned for the specific collections and often surpasses it (denoted

100%*). Figure 7.13 actually shows the worst performance (75.98%) of the

evolved scheme (n2()) when compared with the standard normalisation (n(b))

using the new metric. It can be concluded that the evolved normalisation

scheme chosen (n2()) performs close to, and often surpasses, the performance

of the most optimal setting of b in the standard linear normalisation (7.3)

when using the same underlying function (i.e. gw4 and tff3). A further anal-

ysis of a full evolved term-weighting scheme is conducted in a later chapter.

7.3 Summary

In this chapter an analysis into factors that affect normalisation is presented

in order to understand some of the important concepts surrounding normal-

isation. The characteristics of the returned sets of documents for queries of

different lengths is analysed. It is found that it is the deviation of document

lengths in the returned sets of documents that affects the level of normalisa-

tion to apply (b) when using the linear normalisation function in the BM25

scheme. Using this analysis, training data is devised that is used to learn

general non-parametric normalisation schemes.

As a result, a full term-weighting scheme is completed and tested on
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unseen test data. It is shown that the evolved scheme often significantly

outperforms the best benchmark scheme on general test data. Furthermore,

a method to compare the standard BM25 linear normalisation to the evolved

normalisation is designed to validate the development of the training data

in this experiment. It is shown that the evolved normalisation compares

favourably to the BM25 normalisation over all values of its tuning parameter.

Chapters six and seven have presented experimental results from an entire

term-weighting scheme developed in a three stage incremental process. It

has been shown that the final evolved formula provides a superior ranking

to the BM25 scheme on much of the unseen data for various query lengths

without the need for tuning.
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Chapter 8

A Phenotypic Analysis of the

Search Spaces

A number of questions regarding the evolved term-weighting schemes and the

GP process remain unanswered. As GP is a stochastic process, it is interest-

ing to explore the search process itself and the ability of the GP to effectively

find areas in which good solutions are located. This chapter deals with deter-

mining the closeness of the solutions previously developed, in each of the three

term-weighting function spaces (i.e. term-discrimination, term-frequency and

normalisation). Firstly, a number of phenotypic distance measures are out-

lined. Then, using these phenotypic distance measures, trees are developed

that show the phenotypic distance between all of the term-weighting schemes

in each of the search spaces (function spaces). This framework can be used to

develop a representation of where these evolved solutions are located in the

solution space. The increase in fitness for each generation of the GP process

for the best runs is also included. This chapter ends with some conclusions

regarding the GP process and the resulting solutions.

8.1 Phenotype

The phenotype of an individual is often described as its behaviour. Fitness is

determined by the phenotype, which in turn is determined by the genotype.
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For most problems in an unchanging environment, identical genotypes will

map to identical phenotypes which will have the same fitness. Thus, the

phenotype of a solution in this retrieval environment can be determined by

examining the ranked lists returned given a set of queries.

8.1.1 Phenotypic Distance Measures

Two measures are now presented (Cummins and O’Riordan, 2006b) and are

subsequently used for exploring the space of term-weighting schemes. The

distance measures presented measure only the parts of the ranked lists that

affect the MAP (fitness) of a solution. This is important as the rank of

relevant documents is the only direct contributing factor to the fitness of in-

dividuals in the GP process and as such is the only part of the ranking that

guides the search process. The first metric measures the average difference

between the ranks of relevant documents in two sets of ranked lists. This

measure will tell if the same relevant documents are being retrieved at, or

close to, the same ranks and will indicate if the weighting schemes are evolv-

ing toward solutions that produce similar phenotypes. Thus, the distance

measure dist(F1, F2), where F1 and F2 are two term-weighting schemes, is

defined follows:

dist(F1, F2) =
1

|R|
∑

i∈R











|lim − ri(F2)| if ri(F1) > lim

|lim − ri(F1)| if ri(F2) > lim

|ri(F1) − ri(F2)| otherwise

where R is the set of relevant documents for all queries used and ri(F1) is

the rank position of relevant document i under weighting scheme F1. The

maximum rank position available from a list is denoted by lim and is usu-

ally 1000 (as this is the usually the maximum rank for official TREC runs).

Thus, when comparing two schemes this measure will calculate the average

difference in rank for a relevant document when ranked by two schemes F1

and F2. Although different parts of the phenotype will impact on the fit-

ness to different degrees, they are an important factor in distinguishing the

behaviour of the phenotype. The difference in the position of documents at
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lower ranks can indicate a difference in the behaviour of two term-weighting

schemes, although their performance (fitness) may be similar.

To measure the difference that a change in rank could make in terms

of MAP, the dist() measure is modified so that the change in rank of a

relevant document is weighted accordingly. This weighted distance measure,

w dist(F1, F2), is similar to a previous measure (Carterette and Allan, 2005)

and is calculated as follows:

w dist(F1, F2) =
1
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where Q is the set of queries and Rq is the set of relevant documents for a

query q. This measure considers how the change in rank of a relevant docu-

ment may affect MAP. It is entirely possible that two ranked lists could be

considerably different yet have a similar MAP. This distance measure is more

important if one wishes to determine how the difference in the phenotype may

affect fitness.

Both Spearman’s rank correlation (ρ) and Kendall’s tau are not suitable

for measuring the parts of the phenotype that contribute exclusively to fitness

in a training environment. For example, consider two ranked lists in which

all the relevant documents for a query are positioned at the same ranks. If

some non-relevant documents are positioned at different ranks, both of the

aforementioned measures would indicate there is some difference in these

solutions in the training environment. However, this would not be the case

as they have actually placed the same relevant documents in the exact same

positions and the GP process has actually identified the same solution. It

is not known how likely this senario may be. Distance trees are included

that use one of these measures of distance (i.e. Spearman’s rank correlation)

for completeness. As the ranked lists returned by schemes are all positively

correlated using Spearman’s rank correlation (ρ), the distance measure used

is 1 − ρ. This is because lists which are identical are given a value of 1 and

lists which are not correlated are given a value of 0 for Spearman’s rank
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correlation. As there are many ranked lists produced by each solution, they

are simply averaged over the set of queries giving a single average correlation

metric. Spearman’s rank correlation may be better able to identify how a

term-weighting scheme is likely to perform in a general retrieval environment

as it includes all documents, which would be relevant to at least some as

yet unpresented topic. The distance measures presented earlier can show

if certain relevant documents are being favoured by the GP process in its

training environment.

8.1.2 Cluster Representation in Training Environment

Neighbour-joining is a bottom-up clustering method often used for the cre-

ation of phylogenetic trees. This method is adopted to produce trees that

represent solutions that are from different runs of the GP. The algorithm re-

quires knowledge of the distance between entities that are to be represented

in the tree. A distance matrix is created for the set of entities using a distance

measure and the tree can then be produced from the resulting data. This

clustering technique is used to visualise the phenotypic distance between the

best solutions produced by the GP. For example, if there are N entities (so-

lutions), an N ×N distance matrix can be created using one of the distance

measures. Then, using this distance matrix, trees can be created using a suit-

able drawing package (Choi et al, 2000) which represents the data and can

provide a visualisation of where the solutions are located in relation to each

other in the environment in which the solutions were evolved. This model

is well suited to the evolutionary paradigm and can be used to visualise the

distance between the term-weighting solutions in the environments in which

they were evolved.

8.2 Term-Weighting Solution Spaces

In this section the fitness of the best runs of the GP for each generation are

shown in order to further understand the learning process. It is useful to show

the increase in fitness as the GP progresses. Furthermore, as the phenotypic
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distance between solutions in an environment can be represented visually, the

seven evolved solutions for each of the three term-weighting spaces are placed

in the framework together with the benchmarks used. The benchmarks and

the seven evolved solutions for each function space are visually represented

in the environments in which they evolved.

8.2.1 Evolution of Term-Discrimination schemes

The first function space analysed is the space of term-discrimination schemes.

The best schemes evolved on the training collection were shown to outperform

idf type solutions on unseen data. Figure 8.1 shows the performance of the

best performing individual and average fitness of the population for each

generation for two runs of the GP. The worst runs of the GP (gw5() and

gw6()) still produced a solution that was better than any randomly created

individuals (i.e. those from generation 1). It can be seen that convergence

tends to occur quite quickly in this problem domain and that learning tends

to stop after about 10 generations for this problem.

Solution Space

The distances between the best scheme from each of the seven GP runs is now

visually represented. Figures 8.2, 8.3 and 8.4 show the tree representation of

the seven evolved solutions and the two benchmarks solutions using the three

different distance measures. The fitness of each scheme on the training data

is shown in parentheses. The better evolved solutions on the training data

(gw1 to gw4) are clustered closer together. For example, dist(w1, gw1) is 36.50

and indicates that a relevant document differs by an average of approximately

36 rank positions when ranked by these two schemes on the training data.

w dist(w1, gw1) is 0.0430 and relates to the possible difference in MAP. 1−ρ

is 0.5246 (ρ = 0.4754) and indicates a weak correlation between the ranked

lists produced by the two schemes (w1 and gw1). These trees indicate that

the solutions are evolving towards ranked lists (solutions) produced by gw1

as there is an increase in performance around this area of the tree. Solutions

from run 5 and 6 (i.e. gw5 and gw6) can be seen promote the same documents
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Figure 8.1: Best and average of population for two global weighting runs

as the standard idf type solutions. Phenotypically close solutions will have

a similar fitness but it is not necessarily true that solutions with a similar

fitness will have a similar phenotype (i.e. ranked list). It was previously

determined that gw4 was the better general solution. Although gw1 and

gw2 performed quite well on the validation data slight overtraining may have

occurred in these cases. It can also be seen that the trees produced from

all three distance measures tend to create similar shaped trees, although the

relative distances are slightly different.
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Figure 8.2: Visualisation of global space using dist() measure
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Figure 8.3: Visualisation of global space using w dist() measure
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Figure 8.4: Visualisation of global space using 1 − ρ measure

8.2.2 Evolution of Term-Frequency schemes

The evolution of the solutions in the term-frequency function space is now

examined. Figure 8.5 shows the best and average of the population from

two runs of the GP. One of the runs for this problem (tff5()) did not evolve

anything useful as it failed to incorporate a term-frequency (tfD
t ) aspect. All

other runs of the GP produced solutions that were better than any randomly

created individual. Due to the relatively low term-frequency influence, which

is beneficial when using the evolved global weighting, as was discussed in a

previous chapter, it may be a somewhat difficult problem for GP. It can be

seen that learning tends stop after the 15th generation during the best GP

run (tff3() or run 3) for this problem.
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Figure 8.5: Best and average of population for two term-frequency runs

Solution Space

It was previously shown that the best evolved term-frequency factors outper-

form the benchmark schemes on unseen test data. It was also analytically

shown that the better term-frequency schemes contained a similar relative

term-frequency aspect. It can be hypothesised that they will be closely clus-

tered in the solution space. Figures 8.6, 8.7 and 8.8 show the tree represen-

tations for the seven evolved solutions and the two benchmarks. The fitness

of each scheme on the training data is again shown in parentheses. The

better evolved schemes on the training data are again clustered very close

together. Most runs of the GP evolve solutions which promote the same

relevant documents. The entire ranked lists are also very similar, indicating

that relevant and non-relevant documents are being retrieved near the same
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ranks for the different schemes (indicated by the 1 − ρ measure). One of

the schemes (tff7()) promotes some different relevant documents but has

a comparable performance. This would suggest that there may indeed be

some different types of term-frequency schemes (some that promote different

relevant documents) that are comparable in terms of performance. It would

seem however that in this solution space the schemes which are located close

to tff3() are useful and are at least easier to find (i.e. their genotypes may be

simpler and thus more easily found). A binary solution is also shown in the

trees (indicated by tff5() as it had no term-frequency aspect present). This

scheme simply represents the evolved global term-weighting scheme (gw4) in

this space.

tff2
(27.88)

tff5 (23.90)

(27.22)
tff6

(27.99)
tff3

tff7 (27.63)

PIV s=0 (26.62)

BM25 b=0
(25.85)

tff8 (26.54)
tff4 (27.67)

(27.24)
tff1

Figure 8.6: Visualisation of term-frequency space using dist() measure

As an example of the distances in these trees, dist(BM25b=0, tff3) is

94.43 indicating that a relevant document moves about 94 ranks on average

when ranked by these two schemes. w dist(BM25b=0, tff3) is 0.0911 which

is related to the potential difference in MAP between the two schemes. 1−ρ

is 0.5999 (ρ = 0.4001) for these two schemes indicating again that there

is a weak correlation between the ranked lists produced by the solutions.
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Figure 8.7: Visualisation of term-frequency space using w dist() measure
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Figure 8.8: Visualisation of term-frequency space using 1 − ρ measure
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It is worth noting that the term-frequency factor (tff8()) which was tuned

manually to behave similarly to the better evolved term-weighting schemes

(e.g. tff3()) returns similar relevant documents and has a strong correlation

with these types of schemes.

8.2.3 Evolution of Normalisation Schemes

The better GP runs for the normalisation problem are now shown. Figure

8.9 shows the best and average of three runs of the GP for the normalisa-

tion problem. Convergence seems to occur quite early for the better runs.

However, the best individual in the first generation in some runs has a con-

siderably lower fitness (run 4 or n4() is one such example). In the runs that

have quite a good fitness in the first generation, the dl
dlavg

factor, which seems

to be very useful for normalisation, has been found quite early. This can also

be seen to occur in some form in all evolved solutions (shown in the previous

chapter). For run 4 (shown), the dl
dlavg

function was found after 22 generations

and was modified to its final form ( dl
dlavg+σ(dl)

) in the last 3 generations.

Solution Space

Figures 8.10, 8.11 and 8.12 show the tree representation of the seven evolved

solutions, the two benchmarks and a constant weighting where n() = 1 (i.e.

no normalisation). The fitness of each scheme on the training is again shown

in parentheses. The better evolved schemes on the training data are again

clustered very close together. Three runs of the GP evolved to the same

function. Another run (n1()) evolved a function that is very similar to these

others. The difference between n1() and n2() is negligible in terms of ranking.

n6() is a complex function but has a similar behaviour to many of the other

schemes. The best scheme on the training data (n3()) seems to have slightly

overfitted as n2() is the best solution on the validation data. This scheme has

been evolved three times and has been found quite early in the GP process.

The function is relatively simple and even a very complex function like n6()

promotes similar relevant documents. The entire function promotes different

relevant documents compared to BM25 or the pivoted normalisation scheme,
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Figure 8.9: Best and average of population for three normalisation runs

as the actual ranked lists are different.

The distances in this environment are as follows: dist(BM25, n2()) is

47.15, indicating that a relevant document is different by about 47 ranks.

w dist(BM25, n2()) is 0.10689 which is relates to the potential difference in

MAP between the two schemes. 1 − ρ is 0.23835 (ρ = 0.76165) for these

two schemes indicating that there is stronger correlation between the ranked

lists produced by the solutions than in the previous solution spaces. This

again indicates that the application of normalisation brings types of term-

weighting schemes closer in terms of ranking. This has been suggested in

terms of performance in the previous chapter. However, it can still be

seen that the evolved term-weighting schemes are still different from the

benchmarks. For the two benchmark schemes, dist(BM25, P IV ) = 29.36,

w dist(BM25, P IV ) = 0.0619 and ρ = 0.900 indicating a stronger correla-
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tion between the benchmark schemes.
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Figure 8.10: Visualisation of normalisation space using dist() measure
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Figure 8.11: Visualisation of normalisation space using w dist() measure
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Figure 8.12: Visualisation of normalisation space using 1 − ρ measure

8.3 Summary

Two metrics that measure the distance between the ranked lists returned

by different term-weighting schemes have been presented. These measures

are useful for determining the closeness of term-weighting schemes and for

analysing the solutions without the need to analyse the exact form (genotype)

of a term-weighting scheme. This framework can be used for all types of

term-weighting schemes and complements the GP paradigm adopted.

The distance matrices produced from these distance measures can be used

to produce trees. The two measures outlined are quite similar as the trees

produced have a similar form indicating that they provide similar information

about relative distances between phenotypes. It has been shown that the GP

evolves solutions which produce a similar ranking on the training data. This

ranking is a better overall ranking than those produced by BM25 or the

pivoted document length normalisation scheme. The evolved solutions tend

to have a similarly high fitness. It has also been shown that these solutions

are located in a different area of the solution space than current benchmarks.
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Chapter 9

A Genotypic Analysis Using

Constraints

In this chapter a detailed analysis of one of the evolved schemes previously

outlined is presented. A new axiom which constrains the normalisation aspect

of a term-weighting function is outlined and empirically validated in section

9.1. The axiomatic framework previously introduced is utilised to determine

if the newly evolved scheme is consistent with the axioms (constraints). An

analysis of the benchmark term-weighting schemes and a number of previ-

ously learned term-weighting schemes is also conducted using the constraints

in section 9.2. Section 9.3 presents empirical evidence to support the ax-

iomatic analysis. A summary of the important contributions conludes this

chapter.

9.1 Axioms for Term-Weighting

The existing constraints are now briefly described before introducing a new

constraint. The first constraint (constraint 1) states that adding a new query

term to the document must always increase the score of that document.

The second constraint (constraint 2) states that adding a non-query term

to a document must always decrease the score of that document, while the

third constraint (constraint 3) states that adding successive query terms to a
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document should increase the score of the document less with each successive

addition of that term. A weaker non-redundant constraint (constraint 1.1)

states that adding a query term must lead to a higher score than adding a

non-query term. These constraints (axioms) have been stated more formally

in chapter 4.

9.1.1 A New Axiom for Normalisation

A new constraint is now proposed which aims to avoid over-penalising suc-

cessive occurrences of non-query terms in documents. S(Q, D) is a func-

tion which scores a document D in relation to a query Q in a standard

bag of words retrieval model. With notation similar in style to the origi-

nal research (Fang and Zhai, 2005), the new constraint can be formalised

as follows, where t ∈ T is a term in the set of terms in a corpus and

δ−1
t (t, D, Q) = S(Q, D ∪ {t})−1 − S(Q, D)−1 (i.e. the change of the inverse

score as t is added to the document D):

Constraint 4: ∀Q, D and t ∈ T , if t /∈ Q, δ−1
t (t, D, Q) > δ−1

t (t, D ∪
{t}, Q).

According to Heaps’ law (1978), the appearance of new (unseen) terms

in a corpus grows in roughly a square-root relationship (sub-linearly) to the

document length (in words). Ultimately, it is the number of unique terms

that is the best measure of how broad the topic of the document is likely

to be. For example, consider a document that has 9 words (dl = 9) and

contains 3 unique terms (i.e. vector length of 3). If this document grows

in length to 100 words (dl = 100), the expected number of unique terms

would be approximately 10. Thus, as the document grows in length, the

topic broadens sub-linearly. Furthermore, it is the number of occurrences

(term-frequency) of these unique terms that indicates the strength of each

different aspect (i.e. dimension of the vector) of the document.

Simply using the vector length for normalisation might seem an intuitive

approach when considering such an argument. However, using the vector

length as the normalisation factor will lead to a violation of constraint 2.

Consider a non-query term, which has already appeared in the document. If
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this term re-occurs, the weight of the document will not decrease as the vec-

tor length remains unchanged. This argument has some similarities with the

argument presented in chapter five (section 5.5) regarding the level of gran-

ularity of the document length feature chosen for normalisation. This is an

unexpected yet elegant property of the evolved normalisation schemes. Con-

sequently, the above constraint avoids over-penalising longer documents by

ensuring that the normalisation aspect (measured in repeated terms) is sub-

linear. Therefore, as non-query terms appear in a document they should be

penalised less with successive occurrences. The normalisation used in term-

weighting schemes is inversely related to the weight to apply, and therefore

is typically the denominator in such functions. Essentially, the inverse of the

score reduction due to non-query terms being added should be sub-linear.

9.1.2 An Empirical Validation
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Figure 9.1: MAP of BM25 using n(b) vs n2() for short topics
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Figure 9.2: MAP of BM25 using n(b) vs n2() for long topics

In this section the new axiom (constraint 4) is empirically validated. The

standard BM25 scheme is used for this analysis as the normalisation scheme

contained within is linear for all values of b and the normalisation scheme

was developed in conjunction with the full BM25 scheme. The standard

BM25 scheme using nine values of b (0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,

0.825 and 1) is compared against a modified BM25 scheme. The BM25

scheme is modified by incorporating an evolved normalisation factor. Thus,

the evolved sub-linear normalisation (
√

dl/dlavg) replaces the standard linear

normalisation ((1− b)+ b · dl
dlavg

) in the BM25 scheme. Although the evolved

normalisation was learned in conjunction with a different underlying function,

it is incorporated into the BM25 scheme. Therefore, the only difference

between the two versions of the BM25 scheme is that the modified BM25

scheme adheres to the new axiom (constraint 4) and the original BM25

does not. It is worth noting that this is the same experiment that appears

129



A Genotypic Analysis Using Constraints

in chapter seven (section 7.2.3), except that the underlying term-weighting

function is different.

Table 9.1: Comparison of n2() vs n(b) for BM25

short medium long

Collection % % %

FR 99.99 59.63 44.42
FBIS 95.14 100* 45.17
LATIMES 100* 100* 74.16
FT 100* 100* 100*
OH89 97.76 99.99 -
OH90-91 85.30 100* -

Figures 9.1 and 9.2 shows a sample of these results. These are included

to show the variability of the optimal value of b in the BM25 scheme, even

for the same query lengths. The comparison metric developed in chapter

seven (NC() equation (7.4)) is used to compare the parametic BM25 to the

modified BM25. Table 9.1 details the results from the test collections. It

can be seen that the modified scheme (BM25 with n2()) often outperforms

the optimal setting of b in the original BM25 scheme and in most cases

performs close to the optimal. For some longer queries the performance is

slightly worse than a random setting of b (50%), but in general, and especially

when taking into account the results from chapter seven, the results validate

both the experimental analysis in chapter seven and the theoretical analysis

presented in this chapter. It is encouraging that a non-parametric normali-

sation function that adheres to the new axiom performs comparably to the

optimal performance of the linear normalisation function. Furthermore, it is

reasonable to assume that the reason that the tuning parameter (b) is needed

is because a linear function shape is not correct for normalisation, and thus

needs to be tuned depending on the data presented.
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9.2 Axiomatic Analysis of Schemes

This section presents an analysis of the evolved term-weighting scheme de-

veloped. Furthermore, a brief analysis of three separate term-weighting

schemes developed using GP (Oren, 2002b; Fan et al, 2004; Trotman, 2005)

is presented. An analysis of the BM25 and pivoted document normalisation

schemes using the aforementioned constraints is also included. Consequently,

four learned functions and two standard benchmarks are analysed. A table

detailing constraint satisfaction for each of the term-weighting schemes con-

cludes this section.

9.2.1 Incrementally Evolved Function

One of the term-weighting schemes developed in this work can be written as

follows:

F1(Q, D) =
∑

t∈Q∩D

(ntf(tfD
t , dl) ·

√

cf 3
t · N
df 4

t

· tfQ
t ) (9.1)

where

ntf(tfD
t , dl) =

tfD
t /n(dl)

(tfD
t /n(dl)) + 0.45

(9.2)

and

n(dl) =

√

dl

dlavg
(9.3)

The term-frequency influence factor here (i.e.
tfD

t /n(dl)

(tfD
t /n(dl))+0.45

) has been mod-

elled to reflect the effect of an evolved term-frequency influence function

by measuring the relative term-frequency (chapter six). A previous evalua-

tion using a term-discrimination scheme very similar to one of the schemes

evolved here, showed that the within-document component of the BM25

scheme could be incorporated into the new scheme when k1 was set to 0.2

(Cummins and O’Riordan, 2005). This is again considerably lower than the
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default of 1.2.

Inductive Document and Query Functions

Using inductive growth functions (Fang and Zhai, 2005), the newly evolved

function can be re-written and analysed with regard to the constraints out-

lined in that work. The idea of this inductive framework is to define a base

case function that describes the score (weight) assigned to a document con-

taining a single term matching (or not matching) a query containing a single

term. All other cases can be dealt with inductively using two separate func-

tions. A document growth function describes the change in the score when

a single term is added to the document, while a query growth function de-

scribes the change in the score when a single term is added to the query. The

inductive growth functions for the newly evolved weighting approach are now

described. The parts of the newly evolved function which are constrained by

the framework adopted are also indicated. The constraints (axioms) outlined

in the axiomatic framework are then used as criteria for judging the potential

effectiveness of the scheme prior to evaluation.

In the inductive framework, {q} describes a term added to the query and

{d} describes a term added to a document. The base case simply describes

the weight given to a one-term query matching (or not matching) a one-term

document and is described as follows:

S(Q, D) = f(q, d) =

{

weight(q) = weight(d) q = d

penalty(q, d) q 6= d

where S(Q, D) scores a document D in relation to a query Q. The function

assigns a score of weight(q) to the document when d matches q, otherwise it

assigns a penalty score of penalty(q, d). The evolved term-weighting function

can be rewritten as follows using notation similar in style to the original work

(Fang and Zhai, 2005), where {x, y} ∈ Z > 0 refer to the term-frequency and

the document length respectively:
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S(Q, D) =
∑

t∈Q∩D

(ntf(x, y) ·
√

cf 3
t · N
df 4

t

· tfQ
t ) (9.4)

where ntf(x, y) is as equation 9.2 and n(y) =
√

y
dlavg

(equation 9.3). The

base case function can be written as follows:

weight(q) =

√

cf 3
t · N
df 4

t

· ntf(1, 1) (9.5)

which accurately describes the weight assigned to a one-term query matching

a one term document and was learned in the framework. The following case

describes the weight given to a query term that does not match a document

term:

penalty(q, d) = 0 (9.6)

It should be noted that penalty(q, d) = 0 because of the way the framework

is modelled and not as a result of the GP process itself. Thus, the search is

constrained to those which do not penalise terms explicitly for not occurring.

The following query growth function (g()) describes the change in weight

assigned to a document as a term is added to the query:

g() = S(Q, D) + S({q}, D) (9.7)

This is similar to the pivoted normalisation query growth function as the

weight grows linearly as terms are added to the query. This query growth

function is imposed by the framework adopted, as it can be seen that query

terms are weighted in a simple manner. It has been previously noted that this

is a simple form of growth function. However, there has been no justification

for a more complex form. The following function is the document growth

function and can be written in a somewhat similar manner to that of the

BM25 weighting:

h() =
∑

t∈Q∩D−{d}(S(Q, {t}) · ntf(tfD
t ,dl+1)

ntf(1,1)
) + S(Q, {d} · ntf(tfD

d
+1,dl+1)

ntf(1,1)
)
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This document growth function has been learned in stages and was restricted

in a certain sense by the properties and features initally supplied to the learn-

ing approach, but as is identified in the next section, it was not constrained

by the axioms developed in previous research. This re-writing process helps

to examine the difference between this scheme, the BM25 scheme and the

pivoted document normalisation scheme. It can also be useful for developing

new schemes in a similar analytical approach to the original work (Fang and

Zhai, 2005).

Satisfaction of Constraints

Due to the nature of most modern term-weighting schemes, if the document

length is used explicitly to penalise the document, constraint 1 (and con-

sequently constraint 3) will never be satisfied unconditionally1. However,

if stop-words are removed, the likelihood of this occurring will be lessened.

For this analysis, this phenomenon (i.e. the typically small penalisation of

existing terms in the document) will be ignored as per previous work (Fang

and Zhai, 2005). Therefore, constraint 1 will be deemed satisfied if the score,

attributable from the term, and not the document as a whole, increases for

every occurrence of that term. This proviso leads to the recovery of the more

specific term-frequency constraints in the original work by Fang (2004). Sim-

ilarly, constraint 3 will be deemed satisfied if the score increase, attributable

from a particular term, grows sub-linearly. Nonetheless, the inductive frame-

work and constraints therein are still preferable as they are more general,

more intuitive and are incorporated in a more elegant framework.

The newly evolved scheme satisfies all previously existing constraints and

the newly postulated constraint. It is worth noting that as there are no tun-

ing parameters in this function, the constraints are satisfied unconditionally.

Firstly, it can be seen that the term-discrimination part of this function al-

ways produces a positive value. In fact, all of the term-discrimination factors

evolved (global term-weighting schemes) produce a positive value.

The first constraint (constraint 1) states that adding a new query term

1See Appendix A for a complete explanation
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to the document should always increase the score of a document. In the newly

developed scheme it can be seen that that ntf(x+1, y+1) > ntf(x, y) ∀x, y >

0. It is trivial to show that ntf(x + 1, y) > ntf(x, y) ∀x, y > 0 which

is if the length aspect of the document is ignored. As the term-frequency

(ntf(x, y)) is normalised using x
n(y)

, when x increases by 1, y will increase by

1. Thus, when n(y) is sub-linear (as is the case in the formula) or is linear

with n(0) > 0, this will be satisfied. Due to the method of normalisation

used and because the term-discrimination scheme used will always return a

positive value, this constraint is more readily satisfied. Indeed, all of the

evolved term-discrimination schemes evolved return a positive value. This is

a fundamental property that can be derived from this axiom regarding the

term-discrimination schemes.

The second constraint (constraint 2) states that adding a non-query term

must decrease the score of a document. It is true that ntf(x, y + 1) <

ntf(x, y) for the scheme as the normalisation scheme identified (n(y)), in-

creases ∀y > 0. This will decrease the score of a document. This constraint

enforces some sort of document normalisation (penalisation). As the first

two constraints hold it is obvious that ntf(x + 1, y + 1) > ntf(x, y + 1)

which simply indicates that adding a query term to a document will achieve

a higher score than adding a non-query term to a document (constraint 1.1).

The third constraint (constraint 3) states that adding successive query

terms to a document will increase the score of the document less with each

successive occurrence. Essentially the term-frequency influence must be sub-

linear. It can be shown that (ntf(x + 1, y +1)−ntf(x, y)) > (ntf(x + 2, y +

2)−ntf(x+1, y +1)) ∀x, y > 0 is true for all x and y in the formula. Indeed,

it can be shown that five of the seven evolved term-frequency factors are

sub-linear.

The fourth constraint (constraint 4) states that the inverse of the score

reduction due to successive non-query terms should be sub-linear. Basically,

∀x, y > 0 (ntf(x, y + 1) − ntf(x, y))−1 > (ntf(x, y + 2) − ntf(x, y + 1))−1

must be true for the constraint to be satisfied. It can be seen that this is

true of the evolved term-weighting scheme developed. It is also interesting

that if the normalisation function (n(y)) is sub-linear with respect to y and
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the term-frequency is normalised using x
n(y)

(which is used in the framework),

then the first constraint (constraint 1) will always be satisfied. Indeed, six

of the seven evolved normalisation schemes are sub-linear. This gives some

empirical support to the new axiom.

9.2.2 BM25

The BM25 weighting scheme is presented here again for completeness. The

score of a document D in relation to a given query Q can be calculated as

follows:

BM25(Q, D) =
∑

t∈Q∩D

(
tfD

t · tfQ
t

tfD
t + k1 · ((1 − b) + b · dl

dlavg
)
· log(

N − dft + 0.5

dft + 0.5
))

(9.8)

k1 is set to 1.2 by default, while b has a default value of 0.75.

Analysis

It can be noted that the idf component in the BM25 (log(N−dft+0.5
dft+0.5

)) function

will return a negative value when dft > N
2

and thus violates constraints 1 and

3 in certain circumstances. However, it typically violates these constraints

when stop-word removal is not used, as very frequent terms would otherwise

be removed. Interestingly, the new constraint outlined here (constraint 4) is

violated by BM25 and the pivoted normalisation scheme (outlined next). It

can be seen that constraint 4 is violated when the following normalisation

function is used in both BM25 and the pivoted normalisation scheme (for

any value of b), as this is linear with respect to dl:

nb = ((1 − b) + b · dl

dlavg
) (9.9)

This analysis suggests that when using this function, b needs to be tuned

on each specific collection. If the collection contains some long documents

compared to the average document length, it would be important to have a

low value for b as it would otherwise unfairly penalise these longer documents.
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9.2.3 Pivoted Document Length Normalisation

The pivoted document length weighting scheme (Singhal, 2001) calculates

the score of a document D in relation to a given query Q as follows:

PIV (Q, D) =
∑

t∈q∩d

(
1 + log(1 + log(tfD

t ))

(1 − s) + s · dl
dlavg

· log(
N + 1

dft

) · tfQ
t ) (9.10)

where s is the normalisation parameter referred to as the slope and has a

default value of 0.2.

Analysis

It can be noted that the idf component in the pivoted document length nor-

malisation (log(N+1
dft

)) function will always return a positive value and the

term-frequency factor is sub-linear. However, due to the manner in which

normalisation is incorporated, constraints 1 and 3 are not satisfied uncondi-

tionally for all values of s < 1. In this formula, the normalisation may grow

and offset any gain in the term-frequency factor. A further discussion on

normalisation is included in Appendix A. This scheme satisfies constraint 1

and 3 in most circumstances (i.e. typically while s < 0.4 (Fang et al, 2004)).

It can also be seen that the normalisation function used in this function is

linear and thus violates constraint 4. Again, this suggests that it needs to be

heavily tuned depending of the collection.

9.2.4 Oren

One of the schemes outlined in one of first approaches adopting GP to IR

(Oren, 2002a) can be re-written as follows:

F2(Q, D) =
∑

t∈Q∩D

(
tfD

t

tfD
t + dft + dl · (1 + 0.436 · tfD

t

tfD
max

· (cfmax + log(cfmax)))
) (9.11)

where tfD
max is the frequency of the most common term in D, cfmax is the

frequency of the most common term in the collection.
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Analysis
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Figure 9.3: Change in weight for F2 for scenarios 1 and 2 respectively

This function can be written as
tfD

t

tfD
t +dft+dl·(1+ tfD

t

tfD
max

·K1)
where K1 is a con-

stant such that K1 > 0. Consider the simple case where a document consists

of multiple occurrences of the same query-term (scenario 1). In such a cir-

cumstance, x = tfD
t = dl = tfD

max. The function can then be re-written as
x

x+dft+x·(1+K1)
where dft is a constant for a particular term. Figure 9.3 shows

the change in score for the first 20 occurrences of the query term in this

scenario. An extra occurrence of a query term will make the score of the

document higher and the term-frequency aspect will grow sub-linearly. In

these circumstances, constraint 1 and 3 are satisfied. Now, consider a doc-

ument with 100 terms (dl = 100) and a maximum term-frequency of 30 for

one of the terms (tfD
max = 30) already occurring in the document (scenario

2). The function can then be written as x
x+dft+(100+x)·(1+ x

30
·K1)

. Figure 9.3

also shows the change in weight for the first 20 occurrences of another query

term added to the document in this scenario. It can be seen that in this

circumstance that the score of the document (attributable from that query

term) actually decreases. This violates constraint 1 and 3. Constraint 2 is

satisfied as the score of a document will always decrease as non-query terms

are added due to dl in the denominator. It can be shown that constraint

1.1 is also satisfied. However, it can be determined that the normalisation

component is linear in nature (i.e. the normalisation component dl is linear
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in the denominator) violating constraint 4. As a result this function is likely

to perform poorly in general, and even worse for long queries where a number

of different query terms will interact incorrectly.

9.2.5 Fan et al

The best function outlined from another GP approach (Fan et al, 2004) can

be re-written as follows:

F3(Q, D) =
∑

t∈Q∩D

(
log(tfD

t · X)

vl + 2 · tfD
max + 0.373

) · tfQ
t (9.12)

where
X = (tfD

avg +
tfD

t

log(tfD
t · 2 · tfD

avg)
+

tfD
t · N · tfD

avg · (tfD
max + vl)

df2
t

) (9.13)

where tfD
avg is the average term-frequency in D and vl is the length of the

document vector (unique terms).

Analysis
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Figure 9.4: Change in weight for F3 for scenarios 1 and 2 respectively

Again, consider the simple case where a document consists of multiple

occurrences of the same term. In such a circumstance, x = tfD
t = dl =

tfD
max = tfD

avg and vl = 1. The weight of the document can be written as

log(x · (x + x
log(x·2·x)

+ x·N ·x·(x+1)

df2
t

))/(1 + 2 · x + 0.373). Figure 9.4 shows the

score change when N = 100, 000 and when dft = 1 and when dft = 10. It

139



A Genotypic Analysis Using Constraints

can be seen that constraints 1 and 3 will be violated in this simplistic first

scenario. Now consider the more common case where a document already

contains a number of terms (e.g. dl = 100, tfD
max = 30 and vl = 4). Figure

9.4 shows the score change (attributable from a particular query term) when

it is added to this type of document. The score change can be re-written

as log(x · (100+x
5

+ x
log(x·2· 100+x

5
)
+

x·N · 100+x
5

·(30+5)

df2
t

))/(5 + 2 · 30 + 0.373). In this

second scenario, a new occurrence of a query-term results in a higher score

and the increase in score as the term-frequency increases is sub-linear. As a

result, constraints 1 and 3 are conditionally satisfied. As the normalisation

used is the number of unique terms (vector length), constraints 2 and 4 are

violated. If a non-query term which has already appeared in the document

re-occurs, the weight of the document will not decrease as the vector length

remains unchanged. Even if the document length factor used was changed

to the document length (i.e. dl), constraint 4 would still be violated, as the

normalisation factor is linear in nature.

9.2.6 Trotman

One of the best performing schemes in the GP approach adopted by Trotman

(2005) can be re-written as follows:

F4(Q, D) =
∑

t∈Q∩D

(log
2
|N − log

2
|N |

2 · dft

| · cft

dft

· tfD
t · tfQ

t · cfmax

max(C3, C4 +
C1·(log|C2+tf

Q
t |+cft)·dl

N·dlavg
) + tfD

t

) (9.14)

where cft is the frequency of t in the entire collection of N documents. C1, C2,

C3 and C4 are constants of value 33.40102, 23.94623, 1.2 and 0.25 respectively.

Analysis

Firstly, the log2|
N−log2 |N |

2·dft
| part can lead to a negative weight for terms with

a high document frequency. This leads to constraints 1, 1.1 and 3 being

violated in circumstances similar to the BM25 scheme. Also, it can be seen

that when C3 > C4 +
C1·(log|C2+tfQ

t |+cft)·dl

N ·dlavg
, which typically occurs when cft is

low (i.e. for rare terms), the within-document part of the formula reduces to
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tfD
t

1.2+tfD
t

which is a primitive form of the BM25 local weighting. This form of

the function has no normalisation component and thus, violates constraint 2

in these circumstances. However, this form conditionally satisfies constraints

1 and 3 as adding a query term to a document always increases its score

(constraint 1) and is always sub-linear (constraint 3).

When C3 < C4 +
C1·(log|C2+tfQ

t |+cft)·dl

N ·dlavg
, which typically occurs when the

collection frequency for a term is high (i.e. more common terms) a different

form of the function is used. Consider a typical case when tfQ
t is 1 and

N is large (e.g. 100,000). In such a case, this reduces to approximately

0.25 + 3.2+cft

3000
· dl

dlavg
. For high values of cft, this will exceed C3 (i.e. 1.2).

Interestingly, this can be re-written as
tfD

t

0.25+K2· dl
dlavg

+tfD
t

(where K2 is a global

constant for a particular term) which contains a normalisation form similar

to the BM25 scheme. When the function takes this form constraints 1, 1.1,

2 and 3 are satisfied. However, the normalisation scheme is not sub-linear

and thus does not conform to the new constraint (constraint 4).

9.2.7 Summary of Constraint Satisfaction

Table 9.2: Constraint satisfaction
Constraints

Rank Scheme 1.1 1 2 3 4

1 F1(Q, D) Yes Yes* Yes Yes* Yes
2 BM25(Q, D) Cond. Cond. Yes Cond. No
3 PIV (Q, D) Yes Cond* Yes Cond* No
4 F2(Q, D) Yes Cond* Yes Cond* No
5 F4(Q, D) Cond. Cond. Cond. Cond. No
6 F3(Q, D) Yes Cond* No Cond* No

Table 9.2 shows the constraints that each scheme satisfies. The condi-

tional satisfaction (denoted “Cond.”) indicates that the constraint is satisfied

in some circumstances (as noted in the analysis) but does not unconditionally

satisfy the constraint. “Cond*” indicates a weaker conditional satisifaction.

For example, constraint 3 will only be violated by the BM25 scheme for cer-
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tain high frequency terms (stop-words), while violations of constraint 3 are

inherently more probable for F2 as the function shape is incorrect. Schemes

that satisfy constraints 1 and 3 (i.e. ignoring the typically small penalisation

of previously existing terms in the document) are denoted as “Yes*”. Schemes

that adhere to a constraint unconditionally are denoted “Yes”. Table 9.2 also

shows how the schemes can be ranked based on how many constraints they

satisfy. BM25 is ranked ahead of PIV as the constraints violated in each

case are for different reasons. Thus, PIV will typically break constraints

more often than BM25 will. F2 will also break constraints more often than

PIV because of the different conditions that lead to violations.

It should be noted that this ranking is coarse as it is not known if viola-

tions of different constraints lead to equal levels of suboptimality. It is also

unknown if the schemes identified are specific to a type of query or indeed

the specific environment in which they were trained. Nonetheless, given these

details of constraint satisfaction it seems an intuitive and possibly useful way

of ordering the schemes by expected performance. Furthermore, it is difficult

to know exactly how many constraint violations would happen in a typical

retrieval setting without building a mathematical model that could measure

the number of violations on an actual document collection.

9.3 Empirical Comparison

In this section experiments are presented which empirically validate the pre-

vious analysis. The use of stop-word removal in the experiment leads to

constraints 1 and 3 being satisfied for BM25 and F4 on the collections used

here. This has been determined empirically.

9.3.1 Experimental Results

The results in Tables 9.3 and 9.4 show that F1 outperforms most of the other

schemes on the various test data. The remaining schemes tend to perform in

accordance with the rank in Table 9.2, except for F2 which performs quite

poorly on most of the test data. Statistical significance is measured against
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Table 9.3: %MAP on unseen test collections (I)

LATIMES (351-450) FT91-93 (351-450) FBIS (301-450)

#docs (131896) (138668) (130471)

#topics (95) (96) (115)

Schemes short medium long short medium long short medium long

F1 22.76 24.62 27.52 28.95∗∗ 31.94 34.98∗∗ 27.07∗∗ 29.06∗∗ 28.61
BM25 21.28 24.32 26.97 27.71 29.70 32.56 23.48 24.28 25.66
PIV 19.52 22.22 25.23 26.03 27.86 30.89 22.02 23.17 24.05
F2 11.92 11.17 11.94 17.02 16.72 14.44 14.45 10.85 07.67
F4 22.22 24.55 26.44 28.23 29.13 31.04 22.44 24.76 26.10
F3 11.74 05.78 02.49 22.71 12.23 06.95 25.39 20.50 10.76

Table 9.4: %MAP on unseen test collections (II)

FR (301-450) OH89 (1-63) OH90-91 (1-63)

#docs (55630) (74869) (148162)

#topics (64) (63) (63)

Schemes short medium long short medium short medium

F1 33.11 33.81 39.27∗∗ 27.56 32.80∗∗ 25.53 30.07∗∗

BM25 31.61 31.68 33.47 27.29 30.67 25.54 28.08
PIV 27.87 28.56 30.06 27.65 30.48 24.95 26.76
F2 14.98 14.12 12.56 20.26 15.70 17.70 13.51
F4 26.55 27.05 28.55 26.10 30.72 23.19 26.27
F3 29.21 18.76 08.50 06.97 00.90 06.60 01.05

the BM25 benchmark scheme. Two astericks (**) denotes a statistically

significant increase over BM25. It should be noted that F1 is a slightly dif-

ferent function than in chapter seven as the term-frequency factor is slightly

different. Therefore, the significance tests are slightly different for one of the

collections.

9.3.2 Discussion

The existing axioms and the newly postulated axiom are useful estimators of

term-weighting optimality. They can be useful in estimating the performance
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of a scheme. An interesting result is that many of the learned approaches

conditionally adhere to some of the constraints. This would suggest that they

may have learned useful methods for weighting terms in the training envi-

ronment but that their training data is quite specific (i.e. the constraints are

satisfied for the characteristics on the training data but are not uncondition-

ally satisfied).

These results can aid in the learning of term-weighting functions. Small

collections (less than 10,000 documents) should be avoided when aiming

to learn generalisable term-weighting schemes. Indeed, it has already been

shown that the term-discrimation (global) part of a term-weighting scheme

can indeed be learned on a small collection but it is typically the within-

document (local) part of these schemes that is not generalisable (Cummins

and O’Riordan, 2006a). F2 (Oren, 2002a) was evolved on a document col-

lection of less than 1000 documents. It can be seen that the performance

of this scheme is quite poor and gets worse as more terms are added to the

query.

Furthermore, it is advisable to use medium or long queries when learning

term-weighting schemes. Using only short queries in training (Fan et al,

2004) will most likely lead to very specific term-weighting functions as short

queries do not provide as much information about how terms should interact

with each other (particularly in a term-discrimination context). This can be

seen as the performance of F3 decreases as the query length increases for all

collections. It may be worth noting that using medium or long queries will

lead to an increase in training time.

To overcome the collection dependance problem (which typically affects

the type of normalisation to use), it is advisable to use multiple varied train-

ing collections indexed seperately in order to learn schemes that will adhere

to the constraint specified here. Another possible approach would be to use

vastly different query lengths as it has previously been shown that short

queries return documents sets with a higher deviation of document length.

However, when adopting such an approach the query length should not be

explicitly used as a feature in the term-weighting scheme. This is because

it has been shown that the difference in query length creates different char-

144



A Genotypic Analysis Using Constraints

acteristics in the returned set of documents and a tuning parameter (b) is

needed only if the normalisation function shape is linear.

9.4 Summary

A new normalisation constraint to which the newly evolved scheme adheres

is outlined and both theoretically and empirically validated. The full evolved

scheme is analysed using the axiomatic approach to IR. This term-weighting

scheme is decomposed into document and query growth functions using the

axiomatic framework and is shown to satisfy previously known constraints.

The validity of the existing constraints is further enforced as the term-

weighting scheme described was learned using a purely empirical learning

approach.

It has been shown that the three stage process does not enforce adherence

to the axioms. However, the resulting schemes do tend to adhere to the

axioms more readily than if the functions were evolved in their entirety.

A number of other term-weighting functions are analysed and shown to

adhere to the some of the axioms. One of the schemes is consistent with

more axioms than the others. Interestingly, this scheme is the incrementally

evolved term-weighting scheme. Finally, an evaluation of the term-weighting

schemes validates the analysis. This chapter concluded the work into term-

weighting schemes for traditional text-based IR systems for adhoc retrieval.
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Chapter 10

GP for Automatic Query

Expansion

In this chapter, schemes for the selection and re-weighting of terms in two

standard query expansion (QE) approaches are evolved in a “bag of words”

retrieval model. This chapter can be viewed somewhat independently as it

deals with a different weighting problem from that previously discussed. Sec-

tion 10.1 describes the two basic approaches currently used to automatically

expand queries with potentially useful terms. Section 10.2 outlines the frame-

work and experiments in which schemes for the selection of expansion terms

are evolved. The terminal and function sets for both QE approaches are also

outlined in this section. The results of the experiments are detailed in section

10.3. Finally section 10.4 summarises the main points of the chapter.

10.1 Automatic Query Expansion

Many relevant documents may never get returned by an IR system simply

because the vocabulary of the author and that of the searcher are different.

The example used in a previous chapter supposed a user searching for infor-

mation about fixing a “leaking tap”. Many potentially relevant documents

may contain the word “faucet” instead of “tap”. This mismatch typically

excludes many documents from the returned set and often limits the recall of
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the system. Automatic query expansion deals with automatically adding ex-

tra terms to the query based on some heuristics and resubmitting the newly

expanded query to the IR system.

10.1.1 Local QE Benchmark

In this approach, the set of terms (E) to add to the query are chosen based

on frequency characteristics of the terms in the top few documents (P ) of

an initial retrieval run. The top P documents are assumed relevant and the

Robertson/Sparck-Jones weight, developed for the probabilistic model of IR

(wrsj in equation (2.7)), is often used to determine the usefulness of the terms

(Robertson and Walker, 1999). A simple but effective term-selection scheme

(Robertson and Walker, 1999) is TSVt = pdft · wrsj (equation (2.8)). This

selection scheme simply chooses terms with a high discrimination weight

(wrsj) that appear in many of the top P documents. A number of terms

(|E|) is then chosen based on the TSVt score and these are added to the

query. The weight applied to these expanded terms is the wrsj weight instead

of the idf weight. The number of terms (|E|) and number of top ranked

documents (|P |) deemed relevant are usually fixed. In recent years, local

query expansion has shown promise and can typically increase the MAP of

certain easier queries. Research has shown that improved results are achieved

when the weights of the terms added to the query using this approach are

reduced to about a third of their value (Billerbeck et al, 2003). This will

be the benchmark used in the experiments for this approach (TSV 1
3
). Some

other experiments have used a multiplier of 2.5 which similarly increases the

weight of the original query terms as these are likely to be more important

(Walker et al, 1997).

10.1.2 Global QE Benchmark

This method of query expansion has been less successful than its local coun-

terpart on larger TREC type test collections (Harman, 1993). Term-term (or

co-occurrence) relationships are often measured using the cosine similarity

measure (equation 2.9). Choosing expansion terms in isolation can often ig-
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nore the concept of the query. Therefore, it is often beneficial to measure the

possible expansion terms against each term in the query and aggregate the

values (Qiu and Frei, 1993). The cosine similarity measure is used in these

experiments as a measure of similarity between terms. The vectors that de-

scribe these terms contain binary values indicating the presence or absence

of the term in the document. Thus, documents become the descriptors of

the terms and the vector length becomes the number of documents in the

collection. Therefore, the benchmark scheme for measuring the quality of an

expansion term t against the entire query is as follows:

cos(Q, t) =
1

|Q| ·
∑

q∈Q

dfq,t
√

dfq · dft

(10.1)

This measures the similarity between each term in the query Q against a

possible expansion term t. The average is then used to select and weight

terms in the framework. The top ranked terms in the collection (which

should be related to the concept of the entire query) are then added to the

query.

10.2 Experimental Design

This section introduces the experimental design of both the local and global

GP approaches to query expansion.

10.2.1 Evolving Local QE Selection Functions

The GP approach adopted evolves the scheme used to select and weight terms

for use in the expanded query in order to improve the retrieval of the system.

For each query expansion scheme, each term in the top P documents from

the initial retrieval run is rated on how useful it is. Firstly, it is necessary

to choose a value for |P | and decide how many terms (|E|) to add to the

original query. Previous research has indicated that values for |P | should be

between 8 and 16 and values for |E| should lie between of 7 and 42. Values

of |P | = 10 and |E| = 16 are used as these lie within the best parameter
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ranges (Walker et al, 1997; Billerbeck and Zobel, 2003). In the approach

adopted, the term selection schemes are also used to weight the expansion

terms. Therefore, the top 16 terms should be the most important and terms

lower down the rank should not modify the query as much (and should be

weighted accordingly). |E| is set to 16 so that solutions can be evolved in a

reasonable time, as longer queries take longer to process. It is intuitive that

the weight of an expansion term should be a function of the usefulness of the

expansion term. It is also logical to assume that the weight of the expansion

term is also related to the weighting scheme applied to the original query

terms (i.e. the default BM25 scheme). Thus, the following formula is used

to score the complete expanded query (E ∪Q) in relation to a document D:

S(E ∪ Q, D) = BM25(Q, D) +
∑

t∈E

LSFt · BM25(t, D) (10.2)

where Q is the original query, E is the set of expansion terms, LSFt is the

local selection function (to be evolved) and BM25(t, D) is the BM25 score

of a single term t in the document D. Thus, a weighting of 1 for LSFt would

indicate that the expansion term is as important as if it had occurred in the

original query. Therefore, the GP can also learn the correct weighting for the

expansion terms, which is a function of the usefulness of the expansion term.

This is different from the way in which terms are selected and re-weighted

using the benchmark Robertson/Sparck-Jones weight.

10.2.2 Evolving Global QE Selection Functions

In this approach, the scheme used to select and weight terms based on co-

occurrence characteristics is evolved. Again, it is assumed that the weight of

an expanded term is a function of GSF (Q, t) (i.e. the similarity of a term to

the entire query). Similar to the local expansion framework, the expansion

term is also related to the weighting scheme applied to the original query

terms (i.e. the default BM25 scheme). Thus, the following formula is how

the system scores the complete expanded query (E ∪ Q) in relation to a
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document D:

S(E ∪ Q, D) = BM25(Q, D) +
∑

t∈E

GSF (Q, t) · BM25(t, D) (10.3)

where again Q is the original query and E is the set of expansion terms.

Again, a weighting of 1 for GSF (Q, t) would indicate that the expansion

term t is as important as if it had occurred in the original query. The term-

term similarity measure (sim(q, t)) is the similarity to be evolved in the

framework as follows:

GSF (Q, t) =
∑

q∈Q

sim(q, t) · tfQ
q (10.4)

where tfQ
q is the frequency of query term q in the query Q. The GSF (Q, t)

value is calculated for a subset of the terms in a collection and the top few are

chosen to be added to the query. This approach is computationally expensive

and as a result only the top 8 terms are chosen to add to each query.

10.2.3 Terminal and Function Sets

Local QE Terminal set

The terminal and function set for the local expansion approach is determined

by considering the characteristics of the terms in the set of pseudo-relevant

documents and the characteristics of these terms in the entire collection. It

is important to keep the terminals as primitive (atomic) as possible so that

there are fewer assumptions as to how the relevance of terms, documents

and pseudo-relevant documents are related. The GP should be allowed to

discover the best way to combine these to improve the performance on the

training data. Table 10.1 and Table 10.2 show the terminal and function set

used in these local query expansion experiments. It can be seen that most

of the terminals are primitive and easy to calculate once an initial retrieval

run has been conducted.
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Table 10.1: Local QE terminal set

Terminal Description

N no. of documents in the collection
P no. of documents in pseudo-relevance set (i.e. 10)
cft frequency of term t in the collection
dft document frequency of term t in the collection
pcft frequency of term t in the set of pseudo-relevant documents
pdft number of pseudo-relevant documents containing t
V vocabulary of collection (no. of unique terms)
C size of collection (no. of words)
U vocabulary of pseudo-relevant document set
S size of pseudo-relevant document set in words

Table 10.2: Function set for QE approaches

Function Description

+,−, /,× standard arithmetic operators
log() the natural log
square the square√

the square-root

Global QE Terminal set

The terminal and function set for the global expansion approach is deter-

mined by considering the characteristics of the documents in which the query

terms and possible expansion terms co-occur throughout the entire collection.

It is also important to consider the characteristics of each query term and

each possible expansion term in isolation. Table 10.3 shows the terminal set

chosen. The set of documents in which both t (a possible expansion term)

and q (a query term) co-occur is Tqt. This terminal set is quite large as

there is a number of potential combinations of features that can be gathered

regarding the terms in the documents in which potential expansion terms

co-occur. Table 10.2 is also used as the function set for the global query
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Table 10.3: Global QE terminal set

Terminal Description

cfq frequency of a query term (q) in the collection
cft frequency of a non-query term (t) in the collection
dfq no. of documents in which query term (q) appears
dft no. of documents in which non-query term (t) appears in
N no. of documents in a collection
S no. of words in the collection
|Q| no. of terms in the query Q
binqt no. of documents in Tqt

prodqt sum of the product of the tf ′s (
∑

D∈Tqt
tfD

t · tfD
q )

minqt sum of the minimum of the tf ′s (
∑

D∈Tqt
min(tfD

t , tfD
q ))

sumqt sum of the sum of the tf ′s (
∑

D∈Tqt
tfD

t + tfD
q )

cofq sum of the tf ′s for q in Tqt (
∑

D∈Tqt
tfD

q )

coft sum of the tf ′s for t in Tqt (
∑

D∈Tqt
tfD

t )

Wqt total no. of words in Tqt

1 the constant 1
0.5 the constant 0.5

expansion experiments.

10.2.4 Document Test Collections

Table 10.4: Characteristics of document collections for QE

Collection # docs words/doc # queries words/query
Medline 1,033 56.8 30 11
CISI 1,460 47.8 76 (112) 26.8
Cranfield 1,400 59.6 225 8.8
LISA 6,004 36.3 35 20.9
NPL 11,429 18.8 93 6.8
OHSU88 70,825 75.3 63 4.9
OHSU89 74,869 76.9 63 4.9
LATIMES1

2
65,138 250.8 44 (301-350) 9.9

FBIS1
2

61,578 257.2 36 (351-400) 7.9
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Table 10.4 shows some of the characteristics of the document test col-

lections1 used in these experiments. The document collections are much

smaller than those used in previous experiments due to the computational

cost of conducting these query expansion experiments. The Medline col-

lection is used as the training collection for both experimental approaches.

The TREC collections denoted 1
2

indicate that only half of the collection is

used. Medium length queries (as used in previous experiments) are used with

OHSU88, OHSU89, LATIMES1
2

and FBIS1
2
.

10.2.5 GP Parameters

Local QE Approach Parameters

The local query expansion experiments are run for 100 generations with an

initial random population of 1000. The solutions are trained on the entire

Medline collection and query set. Trees are limited to a depth of 8 as the

terminal set is larger than that previously used. When testing the evolved

schemes after training, query terms can be selected and re-weighted like the

other standard benchmark schemes.

Global QE Approach Parameters

The global query expansion experiments are run for 70 generations with an

initial population of 2000. Populations of less than 500 for this problem

tend to converge prematurely as the terminal set is quite large. Trees are

limited to a depth of 10 simply because of the much larger terminal set for

the global expansion problem. Many of the parameters have been chosen

following preliminary experiments.

Common Parameters

For both approaches, an elitist strategy is used where the best performing

individual is copied into the next generation. The tournament size is set

to 4. The aim of the experiments is to discover general natural language

1http://www.dcs.gla.ac.uk/idom/ir resources/test collections/
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characteristics for query expansion that will aid retrieval performance. As

selected terms should be based on some normalised level, (for example from

0 to 1, indicating how much of the original BM25 weight should be assigned

to the expanded term) original query terms are not added to the expanded

query during training. The fitness function used for both the experiments is

MAP and each experiment was run four times.

10.3 Experimental Results

This section outlines the experimental results for both approaches and in-

cludes a brief discussion of some of the characteristics of the best solutions.

10.3.1 Local QE Results

Figure 10.1 shows the best solution from each generation of the four runs

of the GP. It can be seen that the best solutions from the randomly created

solutions in the first generation are between 58% and 61% MAP. This is

quite high compared to the initial retrieval run (BM25 shown in Table 10.5).

This is because the terms selected from the top ranked documents come from

documents that have a high similarity with the query. The following solution

is the best evolved selection function (LSF4 from run 4) after 4 runs of the

GP on the Medline collection:

LSF4 =

√

√

√

√

(pcf
V

· log(pdf) · pcf 2) + ( P√
df
· log(pdf) · log(pcf))

log( P√
df
· log(log(pcf)) · V )

(10.5)

Table 10.5 shows the performance of the expanded queries using the best

benchmark (TSV 1
3
) and the best evolved selection scheme (LSF4). The

column titled BM25 is the performance of the unexpanded query in the initial

run. Two astericks (**) indicate that the MAP is significantly better than

the benchmark expansion scheme (TSV 1
3
). The dagger (†) indicates that the

MAP is significantly better than the unexpanded original query (BM25). It

is encouraging that the MAP increases on many unseen document collections.
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Fitness of best local expansion for 100 generations
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Figure 10.1: Increase in fitness for local QE approach during training

Table 10.5: %MAP for expanded queries using TSV 1
3

and LSF4

Collection Qrys BM25 TSV 1
3

LSF4

Medline 30 53.43 60.78† 64.20†**
CISI 76 23.08 24.41† 24.93†
Cranfield 225 42.23 43.90 43.38
LISA 35 35.00 38.14 36.95
NPL 93 28.75 28.62 28.77
OHSU88 63 32.78 36.61† 37.00†
OHSU89 63 30.69 31.30 33.98†**
LATIMES1

2
44 30.85 31.26 34.18**

FBIS1
2

36 22.09 22.67 25.10
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Although the training set used is quite small, it can be seen that the term-

selection properties for collections of various sizes are quite similar as the best

scheme found on the training set increases the MAP on the larger collections.

Table 10.6: Scores for expansion terms for topic 301 on LATIMES1
2

Topic 301 Topic 301

Terms LSF4 dft pcft pdft Terms TSV 1
3

dft pcft pdft

anti-terror 0.44 12 3 2 activ 55.5 4916 29 10
organ 0.44 7035 47 10 organ 51.5 7035 47 10
hoodlum 0.38 23 3 2 crimin 22.4 2170 23 6
racket 0.38 341 18 3 repres 20.6 6615 10 7
fbi 0.37 812 25 4 includ 17.4 1811 19 8
rico 0.36 231 35 2 white-collar 17.4 94 3 3
crime 0.35 2681 36 5 justic 17.1 2053 15 5
activ 0.35 4916 29 10 cooper 16.9 2134 7 5
white-collar 0.34 94 3 3 terror 16.7 673 5 4
crimin 0.33 2170 23 6 civil 16.2 2427 16 5
mobster 0.33 67 5 2 act 16.1 5840 14 6
indict 0.30 779 15 3 fbi 16.0 812 25 4
law 0.30 6995 32 6 crime 15.7 2681 36 5
mafia 0.30 110 5 2 anti-terror 15.0 12 3 2
justic 0.30 2053 15 5 law 14.9 6995 32 6
mob 0.30 244 11 2 identifi 14.7 3259 5 5

Table 10.6 shows the top 16 terms added to query 301 for the LATIMES

collection. The title of query 301 is “International Organized Crime” and

the description is as follows: “Identify organizations that participate in inter-

national criminal activity, the activity, and, if possible, collaborating organi-

zations and the countries involved”. This is preprocessed to the following:

“intern organ crime identifi organ particip intern crimin activ activ collabor

organ countri involv”. It is interesting to see that the GP evolves a scheme

(LSF4) which weights terms on a suitable scale for expansion. The first term

selected (‘anti-terror ’) is a non-query term and gets added to the query with

0.44 of its BM25 weight. The second term selected (‘organ’) appears in the

original query three times and is also added with a weight of about 0.44, indi-
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cating that its weight in the re-formulated query will be 3.44 times its BM25

weight. It is interesting to note that although many terms are common to

the top 16 terms for both selection schemes, the ranking is different. As more

terms are added to a query, the performance should plateau as the weight

given to the expansion terms should be weighted correctly to reflect the use-

fulness of the term. This property is investigated next. It is also interesting

that many of the terms are added to the query with an average weight of

about 0.33 times the BM25 weight. This is similar to the benchmark scheme

used here (Billerbeck et al, 2003).

Expanding Queries by More Terms

To test whether the evolved expansion scheme (LSF4) correctly weights ex-

pansion terms, the scheme was tested by allowing various numbers of terms

to the original query. The evolved scheme was originally evolved by adding

the top 16 terms to each query on the Medline collection. Figure 10.2 shows

both the evolved selection scheme and the best benchmark scheme (TSV 1
3
)

for varing numbers of expansion terms on both the OHSU88 and OHSU89

collections. Queries with up to 48 expanded terms in multiples of 8 terms

were evaluated.

Figure 10.2 shows that the evolved selection scheme is quite stable as

more terms are added to the original query. The benchmark scheme is quite

erratic for various numbers of terms. This would seem to indicate that the

weighting assigned to these terms is not correct for the benchmark expansion

scheme (i.e. bad expansion terms are getting an incorrectly high weight or

good expansion terms are not getting a sufficiently high selection value).

For the evolved selection value (LSF4), it can be determined that a term

occurring in only one pseudo-relevant document will get a zero weighting

because of the log(pdf) part of the numerator and in effect is not added

to the query. Thus, the number of terms available for selection is limited

to terms that occur in at least two pseudo-relevant documents. It is also

interesting to note that the LSF4 scheme will only select terms that occur

more than three times in the set of pseudo-relevant documents. This is due
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Figure 10.2: MAP for varying number of Terms (|E|)

to the log(log(pcf)) part of the denominator of the function. This leads to

a very selective type of expansion as for some queries, only a small number

of expansion terms meet the minimum criteria. Studies have shown that

selective query expansion leads to more of an improvement when compared

to massive query expansion (Robertson et al, 1995).

These characteristics have been learned when the number of pseudo-

relevant documents chosen is 10 and may not be generalisable for many

values of P . However, it has been demonstrated that by selecting 16 terms

and also using the selection value to weight the term in the expanded query,

a general and stable selection scheme can be learned. Furthermore, the GP

has evolved a type of automatic thresholding into the weighting scheme that

is different for each query and is dependent on the quality of expansion terms

available to it.

10.3.2 Global QE Results

Figure 10.3 shows that the best solutions from the randomly created first

generation achieve a MAP of between 56% and 57% on the training collec-
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Fitness of best global expansion function over 70 generations
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Figure 10.3: Increase in fitness for global QE approach during training

tion. This is poorer than those from the local approach because terms from

the entire corpus are randomly being added to the query initially and will

have little relation to the query. However, all four runs resulted in a better

performance on the training set in the final generation because the possible

terms were not limited to those from the top 10 documents of an initial run

(i.e. there is a larger number of possible expansion terms to choose from).

The following is the best formula from the 4 runs of the GP:

GSF2 = (((min)/(((((log((df 2
q )))) · ((

√

(log(bin)))/(((df 2
q ))/

(log(cft · S))))) + (((−((coft · cft)/(log(sum))))/((
√

(log(bin)))·
(
√

(
√

S)))) · ((((df 2
q ))/((

√
N)/(log(|Q|)))) + (cofq/(

√
dft)))))+

(−(((log(1)) · ((log(sum)) · ((df 2
q )))) + ((1 + W )/(((df 2

q ))/

(log(cft · S)))))))) · coft)
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Table 10.7: %MAP for expanded queries using best evolved solution

Collection Docs Qrys BM25 cos GSV2

Medline 1,033 30 53.42 57.54 65.63**
CISI 1,460 76 23.08 23.17 23.56
Cranfield 1,400 225 42.23 42.40 38.53
LISA 6,004 35 35.00 34.90 32.23
NPL 11,429 93 28.75 29.28 25.84

Table 10.7 shows the MAP for the original query and the expanded

queries on the smaller collections included in this research. The high compu-

tational cost of conducting the global based QE approach prohibited the use

of the larger collection with the resources available. There is a significant in-

crease in MAP on the Medline collection (i.e. the training set). This confirms

previous concept-based approaches (Qiu and Frei, 1993) which also show a

similar increase on this collection. However, this evolved scheme seems to

be specific to that collection as there is no substantial improvement on any

other collection. In general, this type of query expansion is not as effective as

its local counterpart. For many queries the terms added reduce the perfor-

mance. Even the benchmark scheme used does not signifcantly outperform

the unexpanded queries (BM25).

Nonetheless, it is interesting that specific global expansion schemes can

be learned using GP. The terms added to the queries for the evolved scheme

seem to be of a similar topic on the training collection. For example, Table

10.8 shows the terms added to two queries from the Medline collection for the

benchmark (cos) and the best evolved scheme (GSF2). The weights assigned

to the top 8 most similar terms as determined by both solutions are also

shown. The 21st Medline query (“language development in infancy and pre-

school age”) is preprocessed to the following: “languag develop infanc pre-

school ag”. Its eight most similar terms, according to the evolved solution,

are shown. Similarly, the terms added to the 23rd query (“infantile autism”),

which is preprocessed to “infantil autism”, are also shown. It can be seen

that the evolved scheme promotes terms that seem to be related to the query
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Table 10.8: Scores for expansion terms for two sample Medline queries

Query 21

Terms GSF2 Terms cos

deaf 1.24 children 0.19
learn 1.03 infant 0.13
spoken 0.95 child 0.12
sentenc 0.77 speech 0.12
word 0.74 development 0.11
children 0.69 disord 0.11
teach 0.64 individu 0.11
impair 0.62 psycholog 0.11

Query 23

Terms GSF2 Terms cos

autist 3.24 autist 0.47
mental 2.75 mental 0.30
schizophrenia 2.01 child 0.29
contact 1.55 children 0.26
child 1.40 schizophrenia 0.23
situat 1.37 ego 0.23
innat 1.34 emot 0.22
psychot 1.21 psychot 0.22

concept. It also provides a weighting that is related to the quality of the

expansion term. It can promote different forms of query terms that the

stemming algorithm has failed to conflate (e.g. “autism” and “autist” have

the same stem). The benchmark scheme (cos) shows the average cosine

correlation between the expansion term and the set of query terms. However,

although solutions can be evolved that correctly find good expansion terms

for a query, these solutions seem to be specific. Many global approaches have

failed to achieve an adequate level of performance because the co-occurrence

relationship is defined at a document level. It has been suggested that co-

occurrence should be determined at a closer proximity (i.e. at paragraph or

sentence level). It can also be seen that the solution evolved is very long.

This could also be a reason for its apparent overtraining on the Medline
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collection.

10.4 Summary

Two approaches that attempt to overcome the problem of term-mismatch in

IR have been outlined. GP has been used to develop functions that automat-

ically select and weight terms for use in these two approaches. Local query

expansion schemes have been evolved that outperform standard benchmarks

and importantly increase the performance of many queries on some of the

larger test collections. The best evolved scheme correctly weights expansion

terms for use in the re-formulated query. The best scheme also evolved an

automatic thresholding technique to limit the number of potential expansion

terms available.

The global approach to query expansion is less successful in terms of

generalisation (performance on unseen test data), although specific expansion

formulas can be learned that significantly increase the performance on the

training data. Overall the global approach adopted in these experiments is

not as successful as the local QE approach. However, the global approach

does select terms that are similar to the topic of the query on the training

data and applies a useful weight to these terms.
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Chapter 11

Conclusion

This work has examined an evolutionary based approach to learning term-

weighting schemes in IR. The work has demonstrated a number of experi-

ments and presented results that validate the learning framework adopted.

This work contributes to a number of areas in GP and IR. This concluding

chapter details these contributions as well as outlining a number of avenues

for future work.

Term-Weighting Function Performance

This work has outlined a structured method of incrementally learning term-

weighting schemes in IR. This has been shown to be both theoretically and

empirically valid. The framework has proven useful in analysing and de-

termining useful components in term-weighting schemes. A number of new

term-discrimination schemes have been developed and are shown to signifi-

cantly outperform idf type solutions. The better schemes adopted contain

aspects which adhere to Luhn’s theory of resolving power. The new solutions

are better estimators of the semantic content of a term and are likely to be

useful in other areas in information science.

The term-frequency schemes developed, dependent on the best term-

discrimination scheme, are shown to be less influential in the weighting pro-

cess when compared to the term-frequency schemes used in the benchmarks.

This is somewhat unexpected although it may be surmised that it is because
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of the new density measure (cf/df) contained in the global weighting. This

density measure can be thought of as the average term-frequency of a term

in the documents which contain the term. This leads to an estimation of

term-frequency in the global weighting component. Therefore, it may be

expected that the term-frequency influence factor may be reduced.

The entire term-weighting function is completed by adding a normalisa-

tion scheme. Many factors that affect normalisation have been analysed and

the length of the query has been shown to affect normalisation for a specific

type of scheme (linear). It has been determined that it is the length of the

query that affects the distribution of document lengths in the returned set of

documents. This difference in distribution affects the normalisation tuning

parameter of linear shaped functions. This is an interesting finding. The

completed scheme compares favorably to the benchmarks without the need

of tuning parameters. In fact, it often outperforms a tuned version of the

best benchmark (BM25) without modification on unseen test data. The first

hypothesis [H1 ] has been proven as the term-weighting schemes developed

significantly outperform BM25 on much of the data presented. Moreover,

it can be seen that there is a number of further contributions in each part

of the three component parts of the term-weighting framework. This further

validates the three stage learning process adopted.

Analysis of the Phenotypes

GP has been shown to be a useful and novel method of searching for useful

term-weighting schemes. An analysis of the solution spaces of the three func-

tion types has shown that the better solutions tend to be clustered together.

This supports the theory that the best term-weighting schemes are closely

clustered in the framework adopted and that these are indeed different than

the current benchmarks. In the term-discrimination function space, four

of the seven final solutions contained the cf/df factor and these solutions’

phenotypes were clustered closer to each other that the idf type solutions.

In the term-frequency function space, five of the seven final solutions had

a similar term-frequency influence. This influence is lower than either of the
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benchmarks and again these solution are shown to return similar relevant

documents.

In the normalisation function space, six of the seven methods of normali-

sation developed were sub-linear with respect to the document length factor

used. The same scheme was effectively evolved a number of times for nor-

malisation. It can therefore be concluded that the second hypothesis [H2 ]

is true and that the GP can guide the search to similar useful areas of the

search space for the GP parameters outlined in this work.

Theoretical Validity of the Genotypes

The newly developed term-weighting schemes are shown to satisfy a number

of axioms developed for IR. A new axiom that is satisfied by many of the

evolved normalisation schemes is theoretically and empirically validated. A

comparison of previously learned schemes shows that the incremental pro-

cess aids adherence to these axioms, although importantly does not force

this. Interestingly, all four main axioms cannot be adhered to unconditionally

by modern term-weighting schemes. A solution to this phenomenon is also

presented in Appendix A. A term-weighting approach which uncondition-

ally adheres to all constraints can be created although it may be inefficient.

Furthermore the correlation between function performance and constraint

satisfaction has been reinforced by this research.

It can be concluded that the incremental approach adopted aids in the

adherence to the axioms, as the term-weighting schemes evolved in other

GP approaches do not adhere to as many axioms. It is also shown that the

incrementally evolved solution adheres to more axioms that any of the analyt-

ically developed term-weighting benchmarks. Therefore, the third hypothesis

[H3 ] has been proven true as it can be seen that the evolved term-weighting

schemes are theoretically valid.

Automatic Query Expansion

This work has presented two ways of developing schemes which learn to select

terms for use in an expanded query. Both approaches adopted are shown to
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increase performance over standard benchmark methods on the training data.

For the local QE approach a useful and novel term-selection scheme has been

evolved that contains some interesting thresholding properties. The scheme

evolved for this local QE approach increases performance over the standard

benchmark on a number of unseen collections.

However, on general unseen test data the global QE schemes are not

shown to improve upon the standard benchmarks. In this case the final

hypothesis [H4 ] has not been proven to be true for the global QE part of

this study. As the training collections used in this piece of research are quite

small, it may not be possible to learn suitable schemes for term-selection on

these collections. It could also be that the benchmark selection schemes are

close to optimal given the features used in the global QE approach and that

more evidence or more refined features may be needed to further improve

performance.

However, the analysis conducted regarding the form of these term-selection

schemes is quite brief and a more rigorous analysis would indeed be required

to claim that these evolved QE approaches are superior to the benchmarks

used.

11.1 Future Work

From an application point of view, it would be useful to determine if the

term-discrimination (global) schemes developed are useful in other areas of

information science. Methods of feature extraction and measures of informa-

tion content are used extensively throughout the domain. Document clus-

tering methods and document classification problems are those most likely

to benefit from these types of scheme. Due to the way the term-weighting

schemes have been developed (i.e. incrementally), a scheme (which ignores

normalisation) can be adopted and used for text classification or document

clustering, similar to the way simple tf-idf schemes have been used. In these

text classification and document clustering methods, the documents are typ-

ically compared to each other in a vector framework using a term-weighting

approach. However, as the documents are typically longer than queries and
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are often of similar length, the global and term-frequency methods outlined

in this work could be very useful in such areas. Length aspects (normali-

sation) are often ignored in such methods as basic non-tunable features are

often more useful. Moreover, the schemes developed in this work have been

shown to model relevance and similarity more consistently on various length

documents and queries without the need for tuning.

It has been reinforced that there is a correlation between function per-

formance and constraint satisfaction. The fact that all of the axioms are so

rarely adhered to unconditionally may be useful. By developing an inductive

model that counts the number of constraint violations on actual document

collections, a test collection and set of queries may be mathematically shown

to violate a certain number of constraints for a given term-weighting scheme.

A numerical score corresponding to the number of times a document (and by

extension a test collection) violates the constraints for a given set of queries

may be used as a numerical score to test the optimality and relative perfor-

mance of a term-weighting scheme. This may be a useful tool in measuring

the performance of such schemes because relevance judgments are not used

in the process.

As the inductive axiomatic framework may better model the human de-

termination of relevance, it would be interesting to further explore this area.

The inductive approach seems to mirror the human experience of reading a

document. A term-weighting scheme which unconditionally adheres to all

constraints can be created (as outlined in Appendix A). Although it may

be inefficient, it would be interesting to create such a scheme and test it to

further validate, extend and advocate the axiomatic approach based in this

inductive framework.

It would be interesting to apply GP to other problems areas in IR and

information science. Some limited work regarding query expansion has been

conducted here but much more can be accomplished in this area. Further-

more, the query expansion schemes developed in the latter stages of this

work may be validated by the axiomatic approach to semantic term match-

ing (Fang and Zhai, 2006) in a similar manner to the term-weighting analysis.

This would neatly fit with the work completed to date.
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Appendix A

On Violations and Satisfaction

of Constraints

A.1 Violations of Constraints 1 and 3

20÷5100÷550÷52÷510÷5

1÷620÷6100÷650÷62÷610÷6

w6 =1w5 =20w4 =100w3 =50w2=2w1 =10

Document 1 (score = Σ of terms = 36.4)

Document 2 (score = Σ of terms = 30.5)

Violation of Constraint 1

Query and weights of query terms

Figure A.1: Violation of constraint 1

Due to the type of the normalisation schemes used in modern term-

weighting functions, when a term-weighting scheme uses the document length

explicitly to penalise the document, constraint 1 (and consequently constraint

3) can never be satisfied unconditionally. Consider the case where a term

with an extremely low idf value (i.e. where the term has negligible semantic
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content) is added to a document. The penalisation due to the document in-

creasing in length will more than offset the increase in weight as the term is

added (as all existing terms in the document are penalised by the document

length accordingly). For the BM25 scheme this will only tend to happen for

terms with a very low idf value (terms that appear in close to half of the

documents).

Figure A.1 shows a set of query terms with some basic weights applied to

them. Document 1 contains 5 of the query terms while document 2 contains

6 of the query terms. The normalisation part used in the example is simply

the document length. The normalisation (division by the document length)

reduces the weight of all of the existing terms in the document and therefore,

the score of a document may not increase as a query term is added. In the

example shown, the score of document 1 is calculated by summing up the

scores of the 5 query terms (36.4). The score of document 2 is calculated

similarly (summing up the 6 query terms). As the query term added to

document 2 has a very low term-discrimination weight (w6 = 1) compared

to the other query terms, the increase in weight due to this query term being

added does not offset the increase in penalisation. The score of document

2 is only 30.5, although document 2 is created by adding a query term to

document 1. However, the potential for violations of the type just described

may be more prevalent in different types of term-weighting schemes. It is

worth noting for the discussion presented in this section that the efficiency

of these types of schemes is O(N × |Q|) where |Q| is the length of the query

vector (usually less than 20 for even the longest queries, but often only 2 or 3

for shorter queries) and N is the number of documents in the collection. This

is because only query terms appearing in the document are used to determine

the score of a document. This efficiency is important as test collections are

becoming extremely large.

A.1.1 Choosing Normalisation

The document length is typically used explicitly to penalise documents.

S1(Q, D) and S2(Q, D) describe two possible ways of normalising a doc-
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ument used in modern weighting schemes.

S1(Q, D) =
∑

t∈Q∩D

(
tff()

n()
· w(t)) (A.1)

where w(t) is the term-discrimination aspect, tff() is the term-frequency

aspect and n() is some normalisation aspect. Other functions, such as the

BM25 scheme, penalise the actual term-frequency as follows:

S2(Q, D) =
∑

t∈Q∩D

(tff(
tfD

t

n()
) · w(t)) (A.2)

Both of these approaches to normalisation lead to the same potential vio-

lations of constraints 1 and 3. Furthermore, the first method of normalisation

presented (S1(Q, D) in equation A.1) violates constraints 1 and 3 for more

reasons. As the normalisation (n()) is independent of the term-frequency

influence (tff()), it may grow to such a degree that the penalisation more

than outweighs the increase in weight that the term-frequency provides.
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Figure A.2: Change in score for different methods of normalisation

Consider these two somewhat similar methods of applying normalisation

(i.e. S1(Q, D) and S2(Q, D)) from an inductive perspective. Now, let x

define the term-frequency for a query term. Consider a document that is
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made up of successive occurrences of this term. In such a case, x also defines

the document length. Let log(x) be the term-frequency factor and
√

x be

the normalisation aspect. In isolation they would appear to adhere to the

aforementioned constraints (i.e. the term-frequency is sub-linear and the nor-

malisation is sub-linear). Figure A.2 shows that S1(Q, D) (i.e. log(x)/
√

x)

does not always increase for successive occurrences of query-terms. S2(Q, D)

does adhere to this constraint in the simplest inductive case. Thus, when

normalisation is explicitly used to penalise the document score, it should be

applied to the actual term-frequency as S2(Q, D) (i.e. log(x/
√

x)) to help

satisfy constraint 1 for the simplest inductive case.

A.2 Satisfaction

The problem identified (potential violations of constraints 1 and 3) in section

A.1 can be overcome by penalising documents in an similar manner to how

documents are promoted when query terms occur. In the following solution,

the document length is not used explicitly to penalise a document, but when

a term is found which does not occur in the query, the document is penalised

as follows:

S3(Q, D) =
∑

t∈D

{

tff() · w(t) if t ∈ Q

−b · tff() · w(t) if t /∈ Q

where b is some constant factor. In this formulation it can be seen that the

document length is not used explicitly to penalise the document (i.e. there is

no n() function used). As non query terms occur, a weight is substracted from

the overall score. Furthermore, this penalisation can be different for different

types of non-query terms. In this framework, normalisation is implicit in

the weighting scheme, and not explicit, as is usually the case. This type

of weighting scheme has previously been explored (Jung et al, 2000). As

no summary description of the document length is explicitly used, this may

lead to better normalisation and subsequent retrieval (Jung et al, 2000).

Just as important words are more heavily weighted, words of a high term-
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discrimination value that are not in the query lead to a higher penalisation

as they indicate that the topic of the document varies considerably (i.e. may

relate to many other subjects). This type of normalisation deals with each

term separately and as such deals with the semantic content of the entire

document and not just of the query (via its query terms).

Consider two documents (D1 and D2) that match a similar number of

query terms and are of similar length. If D1 contains non-query terms that

are of negligible semantic content (low term-discrimination) and D2 contains

non-query words that have a high term-discrimination, it may be better to

rank D1 higher than D2 as its topic is not as broad (i.e. the subject of D1 is

not associated to as much off-topic material as D2). As such it is probably

more useful to the user. This intuitively seems like a desirable property in

retrieval. With such a formulation it is easy to see that constraint 1 and

constraint 2 are adhered to. Consequently, it must adhere to the weaker

constraint 1.1. As more of the same non-query terms are added, the increase

in penalisation is also reduced. This approach, however, is less efficient as

the entire document vector must be examined, instead of the much shorter

query vector. The efficiency of this scheme is O(N × |D|) where |D| is

the length of the document vector (on average this is about 150 for the

collections used in the experiments described herein). Thus, there is a trade-

off between unconditionally satisfying constraints 1 and 3 and the efficiency

of the approach adopted.
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Appendix B

Further Evaluation

B.1 Precision-Recall Curves

The following figures shows the 11-point precision-recall curves for the de-

fault BM25 scheme and the entire evolved scheme as outlined in chapter 7

(S(Q, D)). The figures show the precision for all query types (short, medium

and long) for each test collection.
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Figure B.1: Precision-Recall for on FR and FBIS respectively
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Figure B.2: Precision-Recall for on LATIMES and FT respectively
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